
Redpaper

Front cover

IBM Reference Architecture for 
High Performance Data and AI 
in Healthcare and Life Sciences

Dino Quintero

Frank N. Lee, PhD





International Technical Support Organization

IBM Reference Architecture for High Performance Data 
and AI in Healthcare and Life Sciences

September 2019

REDP-5481-00



© Copyright International Business Machines Corporation 2019. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (September 2019)

Note: Before using this information and the product it supports, read the information in “Notices” on 
page vii.



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Now you can become a published author, too . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Stay connected to IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1.  Trends and challenges for precision medicine . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  New trend: The era of precision medicine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2  Challenges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1  Data management challenges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2  Other data challenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2.  The journey of the reference architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1  The history of IBM Reference Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1  First-generation reference architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2  Second-generation reference architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2  Overview of IBM Reference Architecture for High Performance Data and AI . . . . . . . . 12
2.2.1  Challenges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2  The solution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3  Key values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3  Datahub for High-Performance Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1  Datahub functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2  Datahub solution and use cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4  Orchestrator of High-Performance Data Analytics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1  Orchestrator functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2  Orchestrator solution and use cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3.  Deployment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1  Composable genomics blueprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2  IBM Software-Defined Infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3  Multicloud deployment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1  Clouds over the ocean  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 4.  Building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1  IBM Spectrum Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1  IBM Spectrum Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2  IBM Spectrum Archive  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3  IBM Cloud Object Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.4  IBM Spectrum Discover  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2  IBM Spectrum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1  IBM Spectrum LSF Suite  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2  IBM Spectrum Conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3  IBM Power System AC922 for HPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1  Accelerated computing with IBM POWER9 processor-based systems  . . . . . . . . 39
4.3.2  OpenPOWER Foundation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.3  OpenPOWER processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
© Copyright IBM Corp. 2019. All rights reserved. iii



4.3.4  Recent advancements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.5  Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 5.  Use cases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1  The Broad Institute Genome Analysis Toolkit (GATK) . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2  Expanding IBM Reference Architecture for High-Performance Data Analytics into medical 

imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.1  Harnessing AI to transform diagnosis and treatment of brain cancer . . . . . . . . . . 47
5.2.2  Pushing the boundaries of traditional medicine  . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3  Diving into deep learning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.4  Giving physicians the tools to excel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 6.  Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1  Sidra Medicine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1  About Sidra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.2  The Qatar Genome Project focuses on population health and better treatments . 52
6.1.3  Personalized medical advances depend on having a unified view . . . . . . . . . . . . 53
6.1.4  Converging high-performance computing, big data, and cognitive computing . . . 53
6.1.5  Why cognitive computing and IBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.6  A collaboration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.7  Software-defined infrastructure for all data and workloads. . . . . . . . . . . . . . . . . . 54
6.1.8  Faster results with scalability, reliability, and speed . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.9  Adding big data and cognitive computing to high-performance computing. . . . . . 55
6.1.10  Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2  Amsterdam UMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.1  Customer background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.2  Business challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.3  Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.4  Business benefits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.5  Solution components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3  L7 Informatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.1  Customer background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.2  Business challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.3  Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.4  Business benefits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.5  Solution components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4  University of Birmingham  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4.1  Customer background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4.2  Business challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4.3  Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4.4  Business benefits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4.5  Solution components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5  Thomas Jefferson University. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5.1  Customer background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5.2  Business challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5.3  Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5.4  Business benefits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5.5  Solution components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6  Biotechnology and Biomedicine Center of the Czech Academy of Sciences and Charles 
University: BIOCEV  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.6.1  Customer background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.6.2  Business challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.6.3  Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
iv IBM Reference Architecture for High Performance Data and AI in Healthcare and Life Sciences



6.6.4  Business benefits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.6.5  Solution components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.7  Washington University St. Louis and Vanderbilt University. . . . . . . . . . . . . . . . . . . . . . 62
6.7.1  Customer background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.7.2  Business challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.7.3  Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.7.4  Business benefits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.7.5  Solution components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Appendix A.  Profiling GATK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
 Contents v



vi IBM Reference Architecture for High Performance Data and AI in Healthcare and Life Sciences



Notices

This information was developed for products and services offered in the US. This material might be available 
from IBM in other languages. However, you may be required to own a copy of the product or product version in 
that language in order to access it. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in 
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” 
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in 
certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 

Any references in this information to non-IBM websites are provided for convenience only and do not in any 
manner serve as an endorsement of those websites. The materials at those websites are not part of the 
materials for this IBM product and use of those websites is at your own risk. 

IBM may use or distribute any of the information you provide in any way it believes appropriate without 
incurring any obligation to you. 

The performance data and client examples cited are presented for illustrative purposes only. Actual 
performance results may vary depending on specific configurations and operating conditions. 

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the suppliers of those products. 

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and 
represent goals and objectives only. 

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to actual people or business enterprises is entirely 
coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the sample 
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are 
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use 
of the sample programs. 
© Copyright IBM Corp. 2019. All rights reserved. vii



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines 
Corporation, registered in many jurisdictions worldwide. Other product and service names might be 
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright 
and trademark information” at http://www.ibm.com/legal/copytrade.shtml 

The following terms are trademarks or registered trademarks of International Business Machines Corporation, 
and might also be trademarks or registered trademarks in other countries. 

Accesser®
IBM®
IBM Elastic Storage®
IBM Spectrum®
IBM Spectrum Conductor®

IBM Watson®
LSF®
POWER®
Power Architecture®
POWER8®

Redbooks®
Redbooks (logo) ®
Slicestor®
Storwize®
Tivoli®

The following terms are trademarks of other companies:

Veracity, are trademarks or registered trademarks of Merge Healthcare Inc., an IBM Company.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, 
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its 
affiliates.

Other company, product, or service names may be trademarks or service marks of others. 
viii IBM Reference Architecture for High Performance Data and AI in Healthcare and Life Sciences

http://www.ibm.com/legal/copytrade.shtml


Preface

This IBM® Redpaper publication provides an update to the original description of IBM 
Reference Architecture for Genomics. This paper expands the reference architecture to cover 
all of the major vertical areas of healthcare and life sciences industries, such as genomics, 
imaging, and clinical and translational research.

The architecture was renamed IBM Reference Architecture for High Performance Data and 
AI in Healthcare and Life Sciences to reflect the fact that it incorporates key building blocks for 
high-performance computing (HPC) and software-defined storage, and that it supports an 
expanding infrastructure of leading industry partners, platforms, and frameworks.

The reference architecture defines a highly flexible, scalable, and cost-effective platform for 
accessing, managing, storing, sharing, integrating, and analyzing big data, which can be 
deployed on-premises, in the cloud, or as a hybrid of the two. IT organizations can use the 
reference architecture as a high-level guide for overcoming data management challenges and 
processing bottlenecks that are frequently encountered in personalized healthcare initiatives, 
and in compute-intensive and data-intensive biomedical workloads.

This reference architecture also provides a framework and context for modern healthcare and 
life sciences institutions to adopt cutting-edge technologies, such as cognitive life sciences 
solutions, machine learning and deep learning, Spark for analytics, and cloud computing. To 
illustrate these points, this paper includes case studies describing how clients and IBM 
Business Partners alike used the reference architecture in the deployments of demanding 
infrastructures for precision medicine. 

This publication targets technical professionals (consultants, technical support staff, IT 
Architects, and IT Specialists) who are responsible for providing life sciences solutions and 
support.

Authors
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high-performance computing, cloud computing, artificial intelligence (including machine and 
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Specialist. Dino holds a Master of Computing Information Systems degree and a Bachelor of 
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Chapter 1. Trends and challenges for 
precision medicine

Accelerating personalized healthcare and other biomedical workloads requires the adoption 
of cost-effective, high-performance infrastructure for big data analytics and artificial 
intelligence. Healthcare and life sciences organizations worldwide must manage, access, 
store, share, and analyze an explosive amount of data within the constraints of their IT 
budgets. IBM reference architecture for high-performance data analytics for healthcare and 
life sciences defines a platform for delivering the highest levels of performance for big data 
workloads at the same time lowering the total cost of ownership (TCO) for IT.

Advancements in high-throughput molecular profiling techniques and high-performance 
computing (HPC) systems ushered in a new era of personalized medicine. In personalized 
medicine, the treatment and prevention of disease can be tailored to the unique molecular 
profiles, behavioral characteristics, and environmental exposures of individual patients. 
Discovering treatment plans that are tailored to specific patient populations requires a clear 
understanding of the impact that such factors are likely to have on clinical outcomes.

Moreover, the task of delivering those plans in a time-sensitive clinical setting requires 
technical computing platforms that quickly and accurately classify individual patients into 
treatment cohorts most likely to achieve favorable outcomes in a timely manner. Such 
research and clinical tasks require healthcare and life science practitioners to access, 
process, and analyze various complex, information-rich data sources.

This chapter provides an overview of the IBM Reference Architecture for High Performance 
Data and AI in Healthcare and Life Sciences. 

This chapter contains the following topics:

� New trend: The era of precision medicine
� Challenges
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1.1  New trend: The era of precision medicine

Advancing the science of medicine by targeting a disease more precisely with treatment that 
is specific to each patient relies on access to that patient’s genomics information and the 
ability to process massive amounts of genomics data quickly. The following trends are factors 
for this era of precision medicine:

� Data-driven

Advances in precision medicine, genomics, and imaging, along with widespread adoption 
of electronic health records and the proliferation of medical internet of things (IoT) and 
mobile devices, are resulting in an exponential growth of structured and unstructured data:

– By the end of 2020, 25% of data that is used in medical care will be collected and 
shared with healthcare systems by the patients themselves (“bring your own data”).1

– Healthcare providers have fully embraced the IoT, with 72.7% of respondents having 
deployed an IoT solution and the remainder piloting or researching using IoT.2

� Pervasive artificial or augmented intelligence (AI)

To glean actionable insights from these large and complex data sets, healthcare 
organizations are investing in high-performance systems that support AI workloads. Most 
of the investment started in the research areas such as bioinformatics, computational 
chemistry, cellular imaging and natural language processing but started to spread into 
clinical areas such as medical imaging and informatics.

The AI workflow also requires or intersects with traditional workloads such as high 
performance and accelerated computing, machine learning, biostatistics, medical 
analytics and clinical informatics. This trend creates huge challenges on healthcare 
infrastructure and most institutions cannot keep up with the pace of change and 
complexities. 

� Multicloud

Forward-thinking healthcare organizations are modernizing their infrastructure by 
deploying data-driven, multicloud storage and software-defined infrastructure because it 
ensures the highest level of data availability, reliability, and cost-efficiency. The benefits of 
storage and software-defined infrastructure accrue not only to IT, but to clinicians and 
researchers through the increased ability to access data and collaborate across the globe. 

Multicloud storage architecture enables workloads to be deployed to the appropriate 
environment (private, public, dedicated, or hybrid cloud), increasing the speed to value 
and insights. 

Private and public cloud is not an either or situation. There continues to be value in clients’ 
existing landscapes, but more and more workloads which benefit from the value of private 
cloud. Think of cloud as a capability and not a location. The ability to deliver agility and 
composable services does not mean it has to be outside of the firewall; nor it is suggested 
that everything must be behind that firewall either.

There are applications that can be on public clouds and others that are better off on private 
clouds. A hybrid cloud configuration gives you the best value because it enables you to put 
the workloads where they make the most sense.

1  Source: IDC 2018. From our 2018 FutureScape for Health
2  Source: Global IoT Survey, IDC, September 2017
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1.2  Challenges

For many biomedical research and clinical organizations, large-scale initiatives in 
personalized medicine are technically daunting for the reasons that are outlined in this 
section.

The following video provides insights about the challenges for managing the explosive growth 
in healthcare data that is discussed throughout this chapter:

https://bit.ly/2IhSVqO

1.2.1  Data management challenges

The four Vs that define big data also describe genomic data management challenges: 

Volume Very large data size and capacity.

Velocity Demanding input/output (I/O) speed and throughput.

Variety Fast-evolving data types and analytical methods.

Veracity® The capability to share and explore a large volume of data with context 
and confidence.

In this case, the challenges are exacerbated by extra requirements, such as regulatory 
compliance (patient data privacy and protection), provenance management (full versioning 
and audit trail), and workflow orchestration.

Data volume
Genomic data volume is surging as the cost of sequencing drops precipitously. It is common 
for an academic medical research center that is equipped with next-generation sequencing 
(NGS) technologies to double its data storage capacity every 6 - 12 months. Consider a 
leading academic medical research center in New York City (NYC) that started 2013 with 300 
TB of data storage. By the end of 2013, the data storage volume surpassed 1 PB (1000 TB), 
more than tripling the amount from 12 months before.

What made it even more astonishing is that the speed of growth has been accelerating and 
continues still today. For some of the world’s leading genomic medicine projects, such as 
Genome England (UK), Genome Arabia (Qatar), Million Veteran Project (US), and China 
National GeneBank, the starting points or baselines for data volume are no longer measured 
in terabytes but tens and hundreds of petabytes.

Data velocity
Data velocity in a genomic platform can be demanding because of three divergent 
requirements:

� Very large files. These files are used to store genomic information from study subjects, 
which can be a single patient or a group of patients. There are two main types of such 
files: Genomic sequence alignment (Binary Alignment/Map (BAM)) and genetic variants 
(Variant Call File (VCF)).

These files are often larger than 1 TB and can take up half of the total storage volume for 
a typical genomic data repository. Additionally, these files are quickly growing larger, often 
the result of condensing more genomic information from higher resolution coverage (for 
example, from 30× to 100× for a full genome) or a larger study size. 
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As the genomic research evolves from Rare Variant study (variant calling from a single 
patient) to the Common Variant study, there is an emerging need to make joint variant 
calling from thousands of patient samples. Consider a hypothetical case that is provided 
by the Broad Institute: For 57,000 samples to be jointly called, the input BAM file will be 
1.4 PB, and the output VCF file will be 2.35 TB, both extremely large in today’s standards, 
but potentially a common standard soon.

� Many small files. These files are used to store raw or temporary genomic information, 
such as output from sequencers (for example, the BCL file format from Illumina). They are 
often smaller than 64 KB and can take up half of the total file objects for a typical genomic 
data repository.

Because each file I/O requires two operations for data and metadata, workload that 
generates or requires access to many files creates a distinct challenge that is different 
from that of large files. In this case, the velocity can be measured in I/O operations per 
second (IOPS), and typically reaches millions of IOPS for the underlying storage system. 

Consider a storage infrastructure at a San Diego-based academic medical research 
center that was not optimized for massive small file operation. A workload, such as BCL 
conversion (for example, CASAVA, from Illumina), stalls because compute servers are 
constrained by limited I/O capability, especially IOPS.

A benchmark has confirmed that the central processing unit (CPU) efficiency drops to 
single digits because the computing power is being wasted waiting for data to be served. 
To alleviate this computational bottleneck, IBM researchers developed a data caching 
method and tool to move I/O operation from disk into memory.

� Parallel and workflow operation. To scale performance and speed time to results, 
genomics computing is often run as an orchestrated workflow in batch mode. This parallel 
operation is essential to deliver fast turnaround as more workloads evolve from 
small-scale targeted sequencing to large-scale full-genome sequencing. With hundreds to 
thousands of diverse workloads running concurrently in such a parallel computational 
environment, the requirement for storage velocity as measured in I/O bandwidth and IOPS 
is aggregated and climbs exponentially. 

Consider a bioinformatics application from the NYC academic medical research center. 
This application can be run in parallel on 2,500 compute cores, each writing the output to 
the disk at a rate of 1 file per second. Collectively this app creates millions of data objects, 
either 2,500 folders each with 2,500 files or 14 million files in one directory. This workload 
is one of many that contributes to a data repository with 600 million objects, including 
9 million directories that each contain only one file. 

Because of the massive amount of metadata, the IOPS load was constraining the overall 
performance so much that even a file system command to list files (ls in Linux) took 
several minutes to complete. A parallel application, such as the Broad Institute Genome 
Analysis Toolkit (GATK) Queue, also suffered from poor performance.

In early 2014, the file system was overhauled with emphasis on improving the metadata 
infrastructure. As a result, both bandwidth and IOPS performance were improved, and the 
benchmark showed a 10× speedup of a gene-disease app without any application tuning.

Data variety
There are also many types of data formats to be handled in terms of storage and access. The 
data formats range from intermediary files that are created during a multistep workflow, to 
output files that contain vital genomic information, to reference data sets that must be 
carefully versioned. The common approach today is to store all of this data in online or 
nearline disks in one storage tier, despite the expense of this approach.
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One practical constraint is the lack of lifecycle management capability for the massive amount 
of data. If it takes the genomic data repository a long time to scan the file system for 
candidate files for migration or backup, it becomes impossible to complete this task in a 
timely fashion. 

Consider a large US genome center that is struggling to manage its fast-growing data as it 
adopts an Illumina X10 sequencer for full genome sequencing. To complete a scan of the 
entire file system, it takes up to four days, making daily or even longer backup windows 
impossible. As a result, data is piling up quickly in the single-tier storage and slowing down 
the metadata scan and performance even further, which causes a vicious cycle for data 
management.

Another emerging challenge for data management is created by the spatial varieties of data. 
As inter-institutional collaboration becomes more common and a large amount of data must 
be shared or federated, the locality becomes an indispensable character of data.

The same data set, especially reference data or output data, can exist in multiple copies in 
different locations. Alternatively, the same data set can exist in duplicates in the same location 
because of regulatory compliance requirements (for example, physically isolating a clinical 
sequencing platform from one for research). In this case, managing the metadata efficiently to 
reduce data movement or copying reduces the cost due to extra storage, and minimizes 
problems due to versioning and synchronization.

Data veracity
The multi-factorial nature of many complex disorders, such as diabetes, obesity, heart 
disease, Alzheimer’s, and Autism Spectrum Disorder (ASD), requires sophisticated 
computational capabilities. You use these capabilities to aggregate and analyze large streams 
of data (genomics, proteomics, and imaging) and observation points (clinical, behavioral, 
environmental, and actual evidence) from a wide range of sources.

The development of databases and file repositories that are interconnected based on global 
data sharing and federated networks bring the promise of innovative and smarter approaches 
to access and analyze data in unprecedented scale and dimensions. It is in this context that 
the veracity (trustworthiness) of data enters the equation as an essential element. 

For example, clinical data (genomics and imaging) must be properly and completely 
de-identified to protect the confidentiality of the study subject. Genomic data must have 
end-to-end provenance tracking from bench to bedside, to provide a full audit trail and 
reproducibility. The authorship and ownership of data must be properly represented in a 
multi-tenancy and collaborative infrastructure. With the built-in capability to handle data 
veracity, a genomic computing infrastructure must enable the researchers and data scientists 
to share and explore a large volume of data with context and confidence.

1.2.2  Other data challenges

This section describes further technical data management challenges.

Data Gravity
Aside from regulatory or compliance reasons that can dictate where data must be located, 
there are three factors that you need to consider in terms of making the public, private, or 
hybrid cloud decision:

1. Duration of use and the cost effectiveness of each is the first factor. The more you use 
something, the more cost effective it is to own it rather than rent it.
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2. The less stable or predictable the workload is, the more likely you want a dynamic 
environment in which you can add any amount of capacity, and you can benefit from not 
having to pay for that capacity when it is not being used.

3. Finally, data gravity is likely the biggest determination of where applications can be 
located. The further the applications are from the data, the greater the latency and the 
lower the throughput. This can dictate application collocation with data.

Big data
Biomedical data that is required to support personalized medicine initiatives is large, varied, 
and often unstructured. In addition, the amount of data being collected is growing 
exponentially, and it must be archived for extended periods, and sometimes for decades. 

Personalized medicine applications can include the following common data sources:

� Whole genome sequences
� Biomedical imaging from clinical and laboratory instrumentation
� Electronic medical records systems
� Physiological sensors or wearables
� Collections of curated scientific and clinical literature

Technical computing systems must be able to process and store this data at low cost as 
volumes continue to grow.

Data silos
Personalized healthcare requires the aggregation of information that can provide a full view of 
the biological traits, behaviors, and environmental exposures of each patient. However, data 
for a single patient is usually captured and scattered across heterogeneous storage silos 
within health systems and biomedical research institutions, and they must be integrated into a 
common database before analysis can begin.

Compute and data intensive workloads
Analytics workloads can be compute and data intensive. Common examples include 
I/O-intensive analysis pipelines that transform raw, next-generation sequence data into the 
following output types:

� Genomic variant files
� Deep learning techniques for discovering patterns within complex biomedical data sets
� Large-scale data mining of clinical and scientific documents

Such workloads might take hours, or even days, to complete on existing technical computing 
platforms.

Evolving applications and frameworks
Personalized healthcare must often support hundreds of different applications at any given 
time, including those that are related to medical informatics, genomics, image analysis, and 
deep learning.

Such applications are often built on frameworks and databases that are continually evolving, 
including Spark, Hadoop, TensorFlow, Caffe, Docker, MongoDB, and HBase. Biomedical 
research organizations often have difficulty supporting multiple versions of these application 
frameworks and databases, which are proliferating and frequently evolving, sometimes two or 
more times per year.
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Collaboration
Data sharing across institutions and across geographic boundaries is a growing necessity in 
the study of rare diseases and complex disease mechanisms. International scientific 
consortia consisting of academic, commercial, non-profit, and government entities are rapidly 
emerging and sharing biomedical data and related analysis. Collaborating partners often lack 
solutions for sharing their data sets rapidly and cost-effectively without compromising 
protected health information and intellectual property rights.

Many organizations worldwide are finding it difficult to overcome these challenges, especially 
within the constraints of their IT budgets. Clinical and scientific research data must be 
accessed, stored, analyzed, shared, and archived in a time-efficient and cost-effective 
manner. 

However, for many healthcare organizations, biomedical research institutions, and 
pharmaceutical companies today, data is collected in very large volumes. These 
organizations can no longer process, properly store, or transmit this amount of data over 
regular communication lines in a timely manner.

For many organizations, compute and storage silos are proliferating across clinical and 
research groups as analysts collect increasing volumes of data and use that data in complex 
analytical workloads. To move data across long physical distances, organizations often resort 
to disk drive and shipping companies to transfer raw data to external computing centers for 
processing and storage, thus hindering speedy access and data analysis.

To overcome the technical challenges that industry practitioners face in the era of 
personalized healthcare, IBM Systems has created a reference architecture for healthcare 
and life sciences. This reference architecture, which is built on the IBM history of delivering 
preferred practices in HPC, can make it possible for healthcare and life science organizations 
to easily scale compute and storage resources as demand grows.

In addition, this architecture enables organizations to support the wide range of development 
frameworks and applications that are required for industry innovation, all without unnecessary 
reinvestments in technology. 

Workload management in genomics
Genomics workloads can be complex. There are a growing number of genomic applications 
with varying degrees of maturity and types of programming models. Many are single-threaded 
(for example, R) or perfectly parallel (for example, Burrows-Wheeler Aligner (BWA)), and a 
few others are multi-threaded or MPI-enabled (MPI BLAST). However, all applications must 
work together in a high-throughput and high-performance mode to generate final results.
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Chapter 2. The journey of the reference 
architecture

This chapter describes the journey of the reference architecture for genomics. 

This chapter contains the following topics:

� The history of IBM Reference Architecture
� Overview of IBM Reference Architecture for High Performance Data and AI
� Datahub for High-Performance Data Analytics
� Orchestrator of High-Performance Data Analytics
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2.1  The history of IBM Reference Architecture

Key stakeholders in personalized medicine initiatives depend on a reliable and flexible 
platform that meets their diverse data and analytics needs:

� Clinical researchers looking for the actionable biomarkers

� Scientists in pharma research and development organizations progressing potential drugs 
through clinical trials

� Physicians in hospitals delivering precision medicine treatments that give patients the best 
outcomes

IBM Reference Architecture for High Performance Data and AI in Healthcare and Life 
Sciences (formerly IBM Reference Architecture for Genomics) is an end-to-end architecture 
that is designed to address the common requirements of organizations pursuing genomics 
and personalized medicine initiatives in biomedical research.

2.1.1  First-generation reference architecture

In 2013, IBM designed the first enterprise architecture for high-performance computing (HPC) 
in support of the emerging genomics initiative at MD Anderson Cancer Center. The 
architecture addressed the critical requirement to provide a high-performance and scalable 
platform for computational chemistry, bioinformatics, imaging, and other analytical workloads. 

Because there were multiple systems involved, we needed to make the storage infrastructure 
globally and continuously available to serve all of the diverse data needs currently and for 
years to come. Along with the mission-critical need to orchestrate a large compute 
environment and complicated workloads, we captured and addressed these requirements 
into a blueprint that we later called Reference Architecture for Genomics in an IBM Redpaper 
published in 2015.

In this first-generation architecture for genomics, IBM designed the Datahub as an abstraction 
layer for handling demanding genomics requirements, such as high-throughput data landing, 
information lifecycle management, and global name space regardless of sharing protocol. 
These requirements can sometimes be met easily on a single workstation or small cluster, but 
the capability to handle hundreds of servers and petabytes of data is what made Datahub 
unique and essential.

What made Datahub even more valuable was its intrinsic scalability to start small (or big) and 
grow and scale out rapidly based on the workloads. This turned out to be the most important 
aspect of precision medicine and genomics workloads: as the next-generation sequencing 
technologies were rapidly advancing, the data and workloads can grow at a rate of 100% 
every six months.

Datahub fulfills these requirements through software in concert with storage building blocks 
(flash, disk, and tape library). At this point, we were already able to take advantage of best 
practices from other institutions (for example, Mount Sinai) that used tiered storage building 
blocks to land and then move data based on its attributes, such as size and “temperature” 
(time since last access or creation). 

We also designed the Orchestrator as the second abstraction layer for handling application 
requirements, and mapped it towards the computing building blocks. It has specified 
functions, such as parallel computing and workflow automation, which can be fulfilled by 
software in concert with other computing resources, such as an HPC cluster or virtual 
machine farms. 
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This software-defined blueprint was essential to future-proof the infrastructure and sustain the 
usability of applications. This blueprint is designed so that the hardware building blocks can 
be expanded or replaced without impacting the operation of the system, the running of the 
application, and ultimately the user experience. 

Between 2013 and 2014, we also tested the reference architecture of genomics at Sidra 
Medicine in Qatar as part of the Qatar Genome Project. This was when we discovered more 
strategic values of a referenceable architecture. As illustrated in the case study with Sidra 
later, the HPC infrastructure started small but grew rapidly as the Qatar Genome project got 
funded and took off on scale. The architecture served as a roadmap that guided every phase 
of organic growth and infrastructure expansion, at the same time maintaining the integrity and 
sustainability of the applications, analytics, workflow and databases. 

The architecture also ensured interoperability of the applications. When Sidra decided to 
collaborate with MD Anderson on a research project/publication, they shared a genomic 
pipeline based on the Orchestrator and underlying software tools. Given the common 
architecture patterns and building blocks, the two institutions were able to quickly rebuild the 
workflow and co-publish the results of genomic analysis using GATK best practice pipeline. 

2.1.2  Second-generation reference architecture

Since the launch of the reference architecture for genomics, IBM continued to evolve and 
optimize the reference architecture to reflect the changing needs and challenges for the 
healthcare and life sciences industries. We harnessed lessons learned and best practices 
from our clients, industry collaborators, and IBM Business Partners worldwide. Many of these 
clients were early adopters of precision medicine, battling in the frontiers of medicine, 
biotechnology, and pharma to discover and advance care for cancers and rare diseases. 

We also conducted survey among users from various industry groups and consortiums. In the 
survey we inquired about the most challenging aspects of adopting and using infrastructure 
and informatics tools in support of their precision medicine undertakings. We also asked 
about the fields of research or clinical practice these users represent. 

From the results of the survey we can see that although many researchers are in the fields of 
-omics (genomics, metabolomics, proteomics, and so on), there is a trend of increasing 
representation from non-omics fields such as medical imaging, clinical analytics, biostatistics, 
and even real-world evidence (RWE) and internet of things (IoT). 

The need to handle and analyze explosive amount of data and collaborate across fields 
started to bring more and more users to work together and share their experiences. We are 
fortunate to witness and document these challenges and needs from people who are in the 
frontiers of precision medicine. 

So what are some of their top challenges?
The reference architecture must meet the following requirements:

� High-performance. Users want fast and faster time-to-results. The results can be a 
genomics analysis of clinical variants for patients, or an AI model developed for diagnosing 
Alzheimer’s Disease, or new biomarkers for cancer. In all of these cases, traditional 
desktop computing can no longer keep up with the workloads or the data storage. Often, 
users have to wait for days or even weeks for data to be transferred and loaded, then an 
even longer time for processing and analysis. 
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� Low-cost. Many of the users we surveyed emphasized the need to start small in terms of 
the initial platform, and to be able to control the cost during an expansion. Because most 
projects were funded by external grants, or are internal projects subject to annual 
assessment, having low or controlled costs can become a show stopper for many projects. 

Because the data needs to be stored and accessed almost forever, this requirement adds 
a baseline cost that is guaranteed to grow over time. In addition, the location of the data 
often determines the computational needs, so the choice of data storage can be more 
critical than most users anticipate at the beginning of the projects.

� Easy-to-use. Some users reflected in the survey that they learned about the modern big 
data and AI toolings, such as Spark, Hadoop, and Tensorflow, but most of these tools 
require a rather steep learning curve or high threshold of adoption. Users want to spend 
more time analyzing and thinking about the research problem than learning to program, 
debug a file system, or operate a complex IT platform. 

� Collaborative. The users desire collaboration across institutional or geographic boundaries 
without compromising protected healthcare and private, identifiable information. As 
parallel discovery based on an ever-growing data set is becoming a norm, more users are 
experimenting with the public cloud. However, not all of their data or metadata can be 
shared outside their institutions.

Even within the same institution or team, collaboration for sharing resources or data was 
lacking. As an example, one customer told us that they used a Slack channel to share the 
usage of a GPU server for deep learning workloads. “Wouldn’t it be great if a team of data 
scientists could share an ‘unlimited’ pool of resources for compute and data?” they asked 
during the review of the survey. 

With this user feedback and field input in mind, we made a large overhaul of the reference 
architecture in the last two years in three main areas: 

� Data-driven
� Cloud-ready
� AI-capable

We also renamed the reference architecture to High Performance Data and AI to reflect 
these changes and focuses. 

2.2  Overview of IBM Reference Architecture for High 
Performance Data and AI

Scaling high-performance technical platforms to support growing data volumes and diverse 
applications, and at the same time continuing to accelerate workloads and minimizing IT 
costs, requires a flexible yet tightly coordinated framework for data access, computing, and 
storage. This section describes how the IBM Reference Architecture for High Performance 
Data and AI helps solve the challenges by providing a solution to benefit users and IT 
providers. 

2.2.1  Challenges

With the arrival of precision medicine and clinical genomics, biomedical research institutes 
and healthcare providers, such as hospitals, cancer centers, genome centers, pharma R & D 
and biotech companies are dealing with enormous data growth. This data, mainly 
unstructured, is flowing at a rate of terabytes per day, or even per hour, from fast-growing 
sources of instruments, devices, and digital platforms.
12 IBM Reference Architecture for High Performance Data and AI in Healthcare and Life Sciences



This data needs to be captured, labeled, cleaned, stored, managed, analyzed, and archived. 
The disparate file types generated by different research tools and environments create silos 
that impede data access, drive down efficiency, drive up costs, and slow times to insight.

The volume and complexity of data also drives the adoption of modern analytical frameworks, 
such as big data (Hadoop and Spark) and AI (machine learning and deep learning), for 
thousands off research and business applications (for example, genomics, bioinformatics, 
imaging, translational, and clinical). The collaborative nature of the biomedical research also 
facilitates global data sharing in a multicloud environment.

Researchers, clinicians and data scientists struggle to deal with the “ocean” of data and 
application juggling. Because of this struggle, it is imperative for the infrastructure and 
underlying IT architecture to be transformed and become agile, data-driven, and 
application-optimized. The architecture must become data and application ready. 

2.2.2  The solution

The IBM High Performance Data and AI (HPDA) architecture for healthcare and life sciences, 
shown in Figure 2-1 on page 14, is built on the IBM history of delivering best practices in 
HPC. In fact, the basic HPDA framework and building blocks were used to construct Summit 
and Sierra, which are currently two of the world’s most powerful supercomputers for data 
and AI.

The architecture is designed to help healthcare and life science organizations easily scale 
and expand compute and storage resources independently as demand grows, to ensure 
maximum performance and business continuity. It supports the wide range of development 
frameworks and applications required for industry innovation with optimized hardware as a 
foundation, without unnecessary reinvestments in technology.

The HPDA is based on software-defined infrastructure solutions that offer advanced 
policy-driven data and resource management capabilities. It has two key layers, one each for 
managing storage resources and compute resources. Currently, it can support major 
computing paradigms, such as traditional HPC, data analytics, cognitive computing, machine 
learning, and deep learning.

These capabilities then become the infrastructure and informatics foundation for developing 
and deploying applications for various fields, such as genomics, imaging, clinical, real-world 
evidence (RWE), and IoT. The HPDA architecture can be implemented on-premise in a local 
data center, or off-premise in a private or public cloud. We have also demonstrated advanced 
use cases and platforms that can be deployed as a hybrid cloud. 
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Figure 2-1   IBM Reference Architecture for High-Performance Data Analytics and AI

Datahub
The HPDA has a Datahub layer designed to manage the deluge of unstructured data that is 
pouring into and siloed in disparate systems and locations. We define five key functions in 
handling the full lifecycle of data and metadata:

� High-performance ingesting
� Policy-based auto tiering
� Multiprotocol sharing
� Active-active peering
� Metadata cataloging

These five mission-critical functions anchor infrastructural capabilities for data to be captured 
rapidly, stored safely, accessed transparently, and shared globally, wherever and whenever.

The data ingest function is the most basic yet important one: a large amount of raw genomic, 
imaging, and sensor data needs to be quickly ingested into the infrastructure from the various 
data sources. These sources include genomic sequencers, high content screening scanners, 
microscopes, and IoT devices.

One essential requirement for high-performance data ingestion is the ability to load data in 
parallel, so that a large file can be split into many blocks and written into the target storage 
device using a parallel file system. The file system must also be able to handle many 
thousands or even millions of files concurrently. IBM Spectrum Scale is one such file system 
that meets the requirement for high performance data ingestion. 

As a reference architecture, the HPDA Datahub can be implemented as a software-defined 
storage infrastructure on-premise, in a private cloud, or in a public cloud. The infrastructure 
building blocks include low-latency Flash/NVME devices, large-capacity and 
high-performance disk/file system appliances (for example, IBM Elastic Storage® Server), 
low-cost tape libraries, and cloud object stores. 
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Datahub can also be deployed as a software-only solution using customers’ existing public 
cloud infrastructure. 

Based on the requirements for capacity, performance, and projected future growth, an HPDA 
Datahub-based infrastructure can be designed with various building blocks of different sizes 
and price-performance profiles. The management software (for example, IBM Spectrum 
Scale, IBM Spectrum Discover, and Cloud Object Store) then works together to connect 
storage hardware into a global and extensible name space for data services.

Orchestrator
The HPDA has an Orchestrator layer designed to manage myriads of applications and 
workloads, ranging from a high-throughput genomics (DNAseq, RNAseq) pipeline running on 
a large cluster to a medical imaging deep learning training job running on a multi-GPU 
system. There are thousands of applications, tools, frameworks, and workflows that are 
available for use, with many of them still being actively developed. 

The updated versions of the applications often have newer requirements and dependencies 
for infrastructure (operating system, drivers, libraries, configuration, and so on) that can 
conflict with older versions or other packages on the system. Because some next-gen 
applications are developed as Cloud-ready, they can take use modern technologies, such as 
containers, to gain mobility and elasticity. This technology use makes it necessary to 
orchestrate and manage containers so that they can share resources among themselves and 
with non-containerized workloads. 

Applications can and do consume computational resources in many types of ways. From 
highly parallel applications hosted across thousands of nodes, to genomics applications 
running as single-threaded processes with large memory requirements. To handle the 
diversity of the workloads and deliver a consistently high-performance computational 
infrastructure, the first function of Orchestrator is to manage the infrastructure building blocks 
and turn them into usable resources by way of policy-based allocation and job scheduling.

The system administrator can set the policies that prioritize the placement and execution of 
workloads, while users can submit jobs to the scheduler through scripts or the graphical user 
interface. 

The agility, elasticity, and flexibility of the compute infrastructure can be accomplished through 
various functions, such as building platform as a service and cloud computing. The workload 
isolation into containers, automation by pipelining, and sharing through the catalog makes 
efficient use of the resources possible. 

2.2.3  Key values

The Data Hub and Orchestrator were designed as two separate abstraction layers that can 
work together to manage data and orchestrate workloads on any supporting storage and 
computational building blocks. The resulting infrastructure is a true data-driven, cloud-ready, 
AI-capable platform that is able to handle both complex data at scale and the most 
demanding analytics and AI workloads.

All of the applications and use cases developed for the architecture are based on deep 
industry experience, collaboration, and feedback from leading organizations that are at the 
forefront of precision medicine. 

Users and infrastructure providers are achieving valuable results and significant benefits from 
the HPDA solution, as described in the following sections.
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Key values for users
The HPDA solution provides users the following benefits:

� Ease-of-use. It provides a self-service App Center with a GUI based on an advanced 
catalog and search engines for users that enables them to manage the data easily, in 
real-time, with maximum flexibility.

� High-performance. Cloud-scale data management and multicloud workload orchestration 
locate data where it makes sense, and provision the required environment for peak 
demand periods in the cloud, dynamically and automatically, only for as long as needed, to 
maximize performance.

� Low cost. It includes policy-based data management that can reduce storage costs up to 
90% by automatically migrating file and object medical data to the optimal storage tier, 
based on data value and performance criteria.

� Global collaboration. This functionality facilitates multi-tenant access and data sharing that 
spans across storage systems and geographic locations, enabling many research 
initiatives around the globe that use a common reference architecture to establish 
strategic partnerships and collaboration.

Key values for IT providers
The reference architecture offers the following values to IT providers:

� Easy to install. A blueprint compiles best practices and enables IT architects to quickly 
deploy an end-to-end solution architecture, which is designed and tuned specifically to 
match different use cases and requirements from different business and research 
disciplines.

� Fully tested. IT architecture based on a solid roadmap of future-ready proven 
infrastructure can easily be integrated into the existing environment protecting already 
made investments, especially the hardware purchase and cloud services.

� Global Industry Ecosystem. A wide ecosystem aligns with the latest technologies for 
hybrid multicloud, big data analytics, and AI to optimize data for cost, compliance, and 
performance that is needed and expected by end users for better services and patient 
care.

2.3  Datahub for High-Performance Data Analytics

Data management is the most fundamental capability for genomics platforms, because a 
huge amount of data must be processed at the correct time and place at a feasible cost. The 
temporal factors can range from hours (analyzing data in an HPC system) to years (when 
data must be recalled from a storage archive for reanalysis). The spatial aspect can span a 
local infrastructure that provides nearline storage capability to a cloud-based, remote cold 
archive.

Note: The reference architecture is based on collaborative work with leading institutions, 
such as UPMC and Sidra. IBM is expanding it to new domains of imaging, clinical work, 
and AI. This YouTube video illustrates the challenges and their solution.
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2.3.1  Datahub functions

To address the challenges of data management for genomics, define an enterprise capability 
that functions as a scalable and extensible layer for serving data and metadata to all 
workloads. Name this layer Datahub to reflect its critical role as a central hub for data: storing, 
moving, sharing, and indexing a massive amount of genomic raw and processed data. The 
Datahub also manages the underlying heterogeneous storage infrastructure from solid-state 
disk (SSD) and flash storage to disk to tape to cloud (Figure 2-2).

Figure 2-2   Overview of Datahub

The Datahub is the enterprise capability for serving data and metadata to all of the workloads 
(Figure 2-2). It defines a scalable and extensible layer that virtualizes and globalizes all 
storage resources under a global name space. Datahub is designed to provide the following 
key functions: 

� High-performance data I/O
� Policy-driven information lifecycle management (ILM)
� Efficient data sharing through caching and necessary replication
� Large-scale metadata management

For physical deployment, the Datahub must support an increasing number of storage 
technologies as modular building blocks, including the following components: 

� SSD and flash storage
� High-performance fast disks
� Large-capacity slow disks (4 TB per drive)
� High-density and low-cost tape library
� External storage cache that can be locally or globally distributed
� Big data storage that is based on Hadoop
� Cloud-based external storage
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The following key functions are mapped to the Datahub:

� I/O management. This Datahub function addresses the need for large and scalable I/O 
capability. There are two dimensions to the capability: I/O bandwidth for serving large-size 
files, such as Binary Alignment/Map (BAM), and I/O operations per second (IOPS) for 
serving many small files, such as BCL and FASTQ. Because of these divergent needs, the 
traditional one-size-fit-all architecture struggles to deliver performance and scalability. 

Datahub I/O management solves this challenge by introducing the pooling concept to 
separate the I/O operations for metadata and small files from those for the large files. 
These storage pools, although mapped to different underlying hardware to deliver optimal 
storage performance, are still unified at the file system level to provide a single global 
name space for all of the data and metadata, and are transparent to users.

� Lifecycle management. This Datahub function addresses the need for managing the 
lifecycle of data from creation to deletion or preservation. We use the analogy of 
temperature to describe the stages and timeliness in which data needs to be captured, 
processed, moved, and archived. When raw data is captured from some instruments, such 
as high-throughput sequencers, that data is the hottest in temperature and must be 
processed by an HPC cluster with robust I/O performance (so-called scratch storage). 

After initial processing, the raw and processed data becomes warm in temperature, 
because it takes a policy-based process to determine the final outcome: deletion, 
preservation in a long-term storage pool, or being archived. The process accounts for file 
type, size, usage (for example, the last time that it was accessed by a user), and system 
utilization information. 

Any files that meet the requirement for action are either deleted or migrated from one 
storage pool to another, typically one that has a larger capacity, slower performance, and 
much lower cost. One such target tier can be a tape library. Coupled with storage pooling 
and low-cost media, such as tape, this function enables the efficient use of underlying 
storage hardware and drastically lowers the total cost of ownership (TCO) for a 
Datahub-based solution.

� Sharing management. This Datahub function addresses the need for data sharing within 
and across logical domains of a storage infrastructure. As genomic sample and reference 
data sets grow larger (in some cases exceeding 1 PB per workload), it is increasingly 
difficult to move and duplicate data for sharing and collaboration purposes. 

To minimize the impact of data duplication and at the same time enable data sharing, 
Datahub introduces the following elements under sharing management:

– Storage multi-clustering. One compute cluster can access a remote system directly, 
and pull data/storage only on demand.

– Cloud data caching. The metadata index and full data set for a specific data repository 
(host) can be selectively and asynchronously cached on a remote (client) system for 
fast local access.

– Database federation. This enables secured federation among distributed databases. 

In all of these functions, the data sharing and movement can occur over a private 
high-performance network, or over a wide area network (such as the internet). The 
technology accounts for the security and fault tolerance. 

� Metadata management. This Datahub function provides a foundation for I/O, lifecycle, and 
sharing management. The ability to store, manage, and analyze billions of metadata 
objects is necessary for any data repository that scales beyond petabytes of size, which is 
increasingly the case for genomics infrastructures. The metadata includes system 
metadata, such as file name, path, size, pool name, creation time, and modified or access 
time. It can also include custom metadata in the form of key value pairs that applications, 
workflow, or users can create to associate with the files of interest. 
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This metadata must be efficiently used to accomplish the following goals: 

– Facilitate the I/O management by placing and moving files based on file size, type, or 
usage.

– Enable policy-based lifecycle management of data based on information that is 
collected from lightning-fast metadata scans.

– Enable data-caching so that the distribution of metadata can be lightweight and 
depend less on networking.

2.3.2  Datahub solution and use cases

Datahub is based on IBM Spectrum Scale (formerly IBM GPFS) which provides a file system 
with high-performance, scalability, and extensibility characteristics.

Initially developed and optimized as an HPC parallel file system, IBM Spectrum Scale 
manages to serve large volumes of data at a high bandwidth and in parallel to all the compute 
nodes in the computing system. Because genomic pipelines can consist of hundreds of 
applications that are engaged in concurrent data processing on many files, this capability is 
critical in feeding data to the computational genomics workflow.

The traditional genomics pipeline generates a huge amount of metadata and data. The file 
system, which is a system pool that is built on SSD and flash storage with high-IOPS 
capability, can be dedicated to store metadata for files and directories, and in some cases 
small-size files directly. This situation drastically improves file system performance and 
responsiveness to metadata-heavy operations, such as listing all files in a directory.

As a file system with a connector to MapReduce, Datahub can also serve MapReduce and 
big data jobs on the same set as compute nodes, eliminating the need for (and complexity of) 
Hadoop Distributed File System (HDFS).

The policy-based data lifecycle management capability enables Datahub to move data from 
one storage pool to others, maximizing I/O performance and storage utilization, and 
minimizing operational cost. These storage pools can range from high-I/O flash storage or a 
high-capacity storage appliance, to low-cost tape media through integration with a tape 
management solution, such as IBM Spectrum Protect (formerly IBM Tivoli® Storage 
Manager) and IBM Spectrum Archive (formerly IBM Linear Tape File System).

The increasingly distributed nature of genomics infrastructure also requires data 
management on a larger and global scale. Data must be moved or shared across different 
sites, and its movement or sharing must be coordinated with computational workload and 
workflow. 

To achieve this goal, Datahub relies on a sharing function that is based on the Active File 
Management (AFM) feature of IBM Spectrum Scale. AFM enables the Datahub to extend the 
global name space to multiple sites, enabling them to share a common metadata catalog and 
a cache copy of home data for a remote client site to access locally. 

For example, a genomic center can own, operate, and control the versions of all the reference 
databases or data sets during the time the affiliated or partner sites or centers can access the 
reference data set through this sharing function. When the centralized copy of a database is 
updated, so are the cache copies of the other sites.

With Datahub, a system-wide metadata engine can also be built to index and search all the 
genomic and clinical data, enabling powerful downstream analytics and translational 
research.
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2.4  Orchestrator of High-Performance Data Analytics

This section describes the challenges in workload management with genomics, and using 
Orchestrator to help minimize workload management challenges.

2.4.1  Orchestrator functions

Through the Orchestrator, the IBM Reference Architecture for Genomics defines the 
capability to orchestrate resources, workload, and workflow, as shown in Figure 2-3. This 
functionality, a unique combination of the workload manager and workflow engine, links and 
coordinates a spectrum of computational and analytical jobs into fully automated pipelines 
that can be easily built, customized, shared, and run on a shared platform. 

The workload manager allows and enables multiple platforms. This setup provides the 
necessary abstraction of applications from the underlying infrastructure, such as an HPC 
cluster with a graphical processor unit (GPU) or a big data cluster in the cloud.

Figure 2-3   Orchestrator overview

The Orchestrator is the enterprise capability for orchestrating resources, workloads, and 
managing provenance, as shown in Figure 2-3. It is designed to provide the following key 
functions: 

� Resource management, by allocating infrastructure to computational requirements 
dynamically and elastically.

� Workload management, by efficient placement of jobs onto various computational 
resources, such as local or remote clusters.

� Workflow management, by linking applications into logical and automated pipelines.

� Provenance management, by recording and saving metadata that is associated with the 
workload and workflow.
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By mapping and distributing workloads to elastic and heterogeneous resources (HPC, 
Hadoop, Spark, Openstack/Docker, and cloud) based on workflow logic and application 
requirements (for example, architecture, CPU, memory, or I/O), the Orchestrator defines the 
abstraction layer between the diverse computing infrastructure and the fast-growing array of 
genomic workloads.

The IBM reference architecture reflects work that is continually underway within IBM Systems 
to integrate elements of our compute and storage platforms. This integration delivers the 
highest levels of performance for big data, while also lowering the total cost of IT ownership. 

Many healthcare organizations are optimizing their systems with a high-performance 
analytics framework to improve business results, as shown in this High-Performance Data 
Architecture for Healthcare YouTube video.

2.4.2  Orchestrator solution and use cases

The IBM Spectrum LSF® family of products is one such solution to the requirements of the 
Orchestrator. It is used in business-critical environments ranging from semiconductor design 
to aircraft design to financial services.

Genomics pipelines consist of hundreds of applications generating tens of thousands to 
millions of individual jobs. Being able to scale reliably to these volumes is critical to delivering 
a production-quality, personalized medicine solution. Telling a patient that their tests are 
delayed because the IT can’t handle the load is just not acceptable.

A powerful policy engine enables arbitration between different users and applications, with 
time-critical patient analyses being automatically prioritized over research tasks. However, 
fine-grained role-based access control (RBAC) ensures that users only see what they are 
allowed to see, protecting confidentiality and intellectual property. 

IBM Spectrum LSF also supports powerful multicloud capabilities, not only enabling bursting 
or flexing if additional capacity is required, but supporting data affinity. Therefore, particular 
analyses and pipelines can be run where the data resides, rather than incurring the resource 
use required by replicating remote data on-site.

IBM Spectrum LSF Application Manager and IBM Spectrum LSF Process Manager enable 
custom workload portals and workflows to be readily built. These portals and workflows 
enable the healthcare professional to learn new tools faster and with fewer errors. More 
importantly, the professionals can keep their focus on healthcare and not IT.

IBM Spectrum Conductor®, IBM Deep Learning Impact, and IBM Watson® Machine Learning 
Accelerator for Enterprise AI can all use IBM Spectrum LSF for orchestration, allowing a 
broad range of analyses to be supported on a single orchestration platform.

For more information about how to get your data ready for precision medicine and experience 
new records for speed and scale through tips that are based on real-world use cases of 
high-performance genomics and imaging, see The smart tips guide to high performance data 
and AI architecture at the following website:

https://ibm.co/2r3trFc
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Chapter 3. Deployment model

The IBM reference architecture reflects the work that is continually underway within IBM 
Systems to integrate elements of the IBM compute and storage portfolio such that they 
deliver high levels of performance for big data, while at the same time lowering the total cost 
of IT ownership. 

This chapter contains the following topics:

� Composable genomics blueprint
� IBM Software-Defined Infrastructure
� Multicloud deployment model
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3.1  Composable genomics blueprint

A composable, building-block-based solution for genomics, such as the IBM Reference 
Architecture for High-Performance Data Analytics and AI, addresses the most complex 
aspect of data management. By doing so, it enables organizations to store, access, manage, 
and share huge volumes of genomic sequencing data. In addition, the solution addresses 
workload management challenges to enable IT to build, refine, submit, and orchestrate 
computational jobs with maximum resource utilization.

In Figure 2-1 on page 14, the solution components are represented graphically by the 
following layers:

� The top two layers represent the applications, databases, and frameworks that 
researchers and clinicians are using (red and orange boxes).

� The bottom layer represents virtual or physical high-performance compute and storage 
servers where data is processed and stored (white boxes).

� The two middle layers (green and blue boxes) contain software that enables a diverse set 
of biomedical applications to run on shared compute and storage servers efficiently and 
cost-effectively.

The two middle layers have the following functionality: 

� The workload management layer (Orchestrator) makes it possible to distribute thousands 
of computational workflows, in parallel, across enterprise compute servers in a way that 
maximizes utilization of those servers.

� The data management layer (Datahub) enables low-latency data access, convergence of 
heterogeneous data silos, metadata collection, and automated information lifecycle 
management (ILM). 

These two layers give organizations the ability to rapidly scale compute and storage capacity 
upwards, or shrink capacity downward as workloads demand.

For more information about running genomics workloads, see IBM Spectrum Scale Best 
Practices for Genomics Medicine Workloads, REDP-5479 at the following website:

http://www.redbooks.ibm.com/abstracts/redp5479.html

3.2  IBM Software-Defined Infrastructure

Using the IBM Software-Defined Infrastructure, the solution provides healthcare and life 
sciences leaders with a set of options that includes the following features:

� A fully qualified and tested stack for next-generation sequencing (NGS) workloads with 
crisp configuration templates, including tuning and optimization of the blocks to efficiently 
run complete workflows from the Broad Institute Genome Analysis Toolkit (GATK) and 
Burrows-Wheeler Aligner (BWA).

� Easy and rapid assembly of a tested, composable infrastructure to create a scalable, 
HPC-like cluster to analyze genomics data.

� Flexible deployment models that are derived from the composable design, enabling simple 
and easy scalability of the storage, compute, and network building elements. These 
models include preferred practices for implementing genomics clusters in different 
configuration sizes based on actual customer needs.

� Neutral compute platforms.
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� An innovative GUI for submitting and managing compute jobs and for viewing cluster 
status and utilization.

� User nodes to access interactive applications.

The IBM solution can enable data scientists to efficiently deliver results to physicians, meet 
physicians’ on-demand requests for analysis, and improve the underlying infrastructure to 
meet core objectives. Using this solution, IT architects and IT administrators can easily 
design, install, and manage deployment in a timely manner without being overwhelmed.

3.3  Multicloud deployment model

You can learn how your organization can take advantage of a cloud with software-defined 
infrastructure to advance precision medicine. You can start getting answers fast and save 
costs on infrastructure, as shown in the following video:

https://bit.ly/2F7Wb85

3.3.1  Clouds over the ocean

Advances in precision medicine, genomics, and imaging; the widespread adoption of 
electronic health records; and the proliferation of medical internet of things (IoT) and mobile 
devices are resulting in an explosion of structured and unstructured healthcare-related data. 
Industry analysts expect that by 2020, the amount of medical data in the world will double 
every 73 days. In addition, a typical healthcare consumer in developed countries will generate 
1,200 terabytes of data in a lifetime.1

A substantial amount of this healthcare data deluge serves to advance precision medicine, 
such as medical research, which drives the need for HPC environments to support big data 
demands. For example, sequencing an individual’s entire genome, a task growing ever more 
common, requires the same amount of data storage as 100 feature-length movies.2

However, data volume is not the only problem faced by medical research. Disparate file types 
generated by different research tools and environments create silos that impede data access, 
drive down efficiency, drive up costs, and slow times to insight. To address the challenges 
posed by both the volume and variety of medical research data, world-class healthcare 
organizations are building data “oceans”.3

To construct data oceans, software-defined infrastructure solutions are deployed as 
foundations to manage and run rapidly evolving healthcare and life sciences applications (for 
example genomics, imaging, and clinical). These software-defined infrastructure solutions 
enhance the HPC platform with analytics open frameworks, such as Hadoop and Spark, and 
consolidate disparate data stores. 

Behind the scenes, the software-defined infrastructure architecture creates a Datahub to 
manage the ocean of data, orchestrate the different applications, and provide intelligent 
workload and policy-driven resource management. Putting all the data together into one 
coherent data resource to be analyzed, and making it available to all users 
anywhere-anytime, is key to facilitating research and accelerating time to insights.

1  IDC InfoBrief: Modernizing Healthcare IT for the Data-driven Cognitive Era, April 2018 
(https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=41015041USEN&)

2  Workgroup for Electronic Data Exchange (WEDI) 
(https://www.wedi.org/docs/publications/a-white-paper-by-the-genomics-workgroup.pdf?sfvrsn=0)

3  IBM video: High-Performance Data Architecture for Healthcare 
(https://www.youtube.com/watch?v=Fgrq8nyihY&list=PLS7mekU2kxDowLMKIpBA_ZQb5Fipyv4zR&index=1)
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The benefits are substantial. The ability to automatically migrate medical data to the optimal 
storage tier can substantially reduce costs. 

Eliminating the need for separate processing platforms for different data types dramatically 
increases resource utilization. Massive parallel processing and enhanced application and 
data portability accelerate time to insights. However, it is not entirely serene “sailing” across 
HPC data oceans. They do not solve every data processing problem. Medical research, like 
many other HPC environments, generates peaks and valleys of resource demand. 

The efficiency and high utilization rates that data oceans are designed to produce can work 
against them when demand peaks beyond infrastructure capabilities. To accommodate these 
spikes in demand, traditional HPC environments often divide jobs and stretch out scheduling, 
lengthening time to insight. However, the same software-defined infrastructure solutions used 
to create data oceans can also address this challenge by adopting a hybrid cloud. 

IBM Spectrum Scale and IBM Spectrum Computing family members, such as IBM Spectrum 
LSF, have long and successful histories of providing solutions to the full landscape of HPC 
challenges. 

For example, by using IBM Spectrum LSF, healthcare researchers can determine through an 
advanced reporting functionality where the bottlenecks are that cause jobs to run slower. 
Then IBM Spectrum LSF can move targeted jobs to the cloud:

� Does an HPC job require more memory? Run it on servers in the cloud with more 
memory. 

� Does it need faster access to the underlying data? Provision a massively parallel IBM 
Spectrum Scale file system for the fastest access on the planet. 

Whatever resources are needed, with IBM Software-Defined Infrastructure solutions, 
healthcare researchers can provision the required system for peak demand periods in the 
cloud, dynamically and automatically, only for as long as needed, resulting in faster insights 
for a fraction of the cost of building on-premises solutions.

The question becomes, can every high-performance data architecture provide the 
infrastructure support, flexibility, and agility needed to meet highly demanding and 
unpredictable healthcare HPC requirements? Again, IBM offers solutions for cloud-scale data 
management and multicloud workload orchestration based on a Reference Architecture for 
High Performance Data and AI Platforms (HPDA). 

Teaming with L7 Informatics (L7), the two solution-providers have built a cloud-based HPC 
environment that enables scientists to process and analyze huge volumes of genomics data 
up to 96% faster. Built on the IBM Cloud platform, the L7 Genomic Cloud uses IBM Spectrum 
Scale and IBM Spectrum LSF to support rapid data processing and analysis.4 For more 
information, see 6.3, “L7 Informatics” on page 57.

Chris Mueller, Founder of L7 Informatics, explains: “IBM Spectrum Scale provides 
high-performance data storage that we can scale quickly and easily. Built-in tiering 
capabilities allow a lot of flexibility in how we move data around, enabling customers to 
seamlessly migrate data from lab instruments up to the cloud for analysis and long-term 
storage. IBM Spectrum LSF, meanwhile, offers everything we need for HPC workload 
management in a single package, from job scheduling tools to resource management 
capabilities. It gives us the tools to manage the L7 Genomic Cloud as a complete HPC 
environment rather than just as a virtual machine and associated storage layer, providing 
intelligent, policy-driven scheduling and improved visibility to increase throughput.”

4  IBM Marketplace: L7 Informatics, (https://www.ibm.com/case-studies/l7-informatics-systems-spectrum-hpc)
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Oceans and clouds. For millennia these natural systems have nourished and supported 
humanity. Perhaps it is not as surprising as it might seem that digital versions of them are now 
helping to accelerate medical advancements that offer great human benefit. 

Follow the links in the case study to learn more about how you can build software-defined 
data oceans and agile hybrid clouds that help your organization lower costs, and at the same 
time gain precious insights faster.
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Chapter 4. Building blocks

This chapter describes the building blocks for the solution, and contains the following topics:

� IBM Spectrum Storage
� IBM Spectrum Computing
� IBM Power System AC922 for HPC

4
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4.1  IBM Spectrum Storage

The life science industry’s explosive data growth in genomics, translational, and personalized 
medicine sectors have created massive challenges for their IT organizations. Managing this 
magnitude of data requires high-performance technical environments to process the 
enormous amount of unstructured data and support the increasingly sophisticated 
simulations and analyses workloads.

Organizations looking for root causes and cure for diseases need their data infrastructure to 
seamlessly produce the speed, accessibility, reliability, and security to increase productivity at 
lower costs, foster innovation and collaboration, and compete more effectively.

These critical data infrastructure capabilities can be addressed by the IBM Spectrum Storage 
family of products. IBM Spectrum Storage delivers proven technology for software-defined 
storage that can dynamically and flexibly store data at optimal cost, helping maximize 
performance and ensure data protection. 

The IBM Spectrum Storage family includes IBM Spectrum Control and IBM Spectrum Protect 
for simplified management, IBM Spectrum Archive and IBM Spectrum Virtualize for increased 
efficiency, and IBM Spectrum Accelerate and IBM Spectrum Scale for the agility to meet 
changing needs.

IBM Spectrum Scale fits well for the workload this book focuses on, which are distributed and 
cloud-ready applications.

4.1.1  IBM Spectrum Scale

In the IBM Reference Architecture for Genomics, data management for computational 
workloads is enabled by IBM Spectrum Scale. IBM Spectrum Scale is a proven, scalable, and 
high-performance data and file management solution that provides world-class storage 
management with scalability. Leading genomics centers, medical institutions, and 
pharmaceutical companies worldwide are already investing in IBM Spectrum Scale.

These organizations us IBM Spectrum Scale to store, archive, process, and manage a vast 
amount of structured and unstructured data, including genomic sequences, biomedical 
images, and electronic medical records. IBM Spectrum Scale is well-suited for managing 
biomedical data and related analytics because it addresses the following challenges:

� Rapid growth of data volumes.

� I/O-intensive workloads, which are often required to analyze raw genomic sequences.

� Heterogeneous file and object storage clusters that use different operating systems, 
storage access protocols, storage media, and storage hardware.

� Data sharing across globally distributed projects.

� Metadata identification, collection, and search, which are required for scientific and clinic 
repeatability, validation, and long-term archiving.

� Requirements for secure storage and secure deletion of data containing sensitive 
information.

Moreover, IBM Spectrum Scale enables policy-drive information lifecycle management (ILM) 
across multiple storage tiers that are built on flash storage, disk, and tape media across local 
or remote locations. Automated policies make it possible for administrators to define where, 
when, and on what media data (or metadata) will be stored to maximize workload 
performance and minimize overall storage costs. 
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For example, low-latency flash storage systems might provide the best price performance for 
small volume and highly used data in I/O-intensive workloads. In contrast, Linear Tape File 
System (LTFS) tape offers the best price performance for large volume and less-used data 
sets that are ready for long-term archive.

4.1.2  IBM Spectrum Archive

IBM Spectrum Archive, a member of the IBM Spectrum Storage family, enables direct, 
intuitive, and graphical access to data that is stored in IBM tape drives and libraries by 
incorporating the LTFS format standard for reading, writing, and exchanging descriptive 
metadata on formatted tape cartridges. IBM Spectrum Archive eliminates the need for extra 
tape management and software to access data. 

IBM Spectrum Archive offers several software solutions for managing your digital files with the 
LTFS format:

� Single Drive Edition (SDE)
� Library Edition (LE)
� Enterprise Edition (EE)

This book focuses on IBM Spectrum Archive EE.

IBM Spectrum Archive Enterprise Edition provides seamless integration of LTFS with IBM 
Spectrum Scale, which is another member of the IBM Spectrum Storage family, by creating a 
tape-based storage tier. You can run any application that is designed for disk files on tape by 
using IBM Spectrum Archive EE because it is fully transparent and integrates into the IBM 
Spectrum Scale file system. IBM Spectrum Archive EE can play a major role in reducing the 
cost of storage for data that does not need the access performance of a primary disk.

With IBM Spectrum Archive EE, you can enable the use of LTFS for the policy management 
of tape as a storage tier in an IBM Spectrum Scale environment, and use tape as a critical tier 
in the storage environment.

The use of IBM Spectrum Archive EE to replace online disk storage with tape in tier 2 and 
tier 3 storage can improve data access compared to other storage solutions because it 
improves efficiency and streamlines management for files on tape. IBM Spectrum Archive EE 
simplifies the use of physical tape by making it transparent to the user, and manageable by 
the administrator, under a single infrastructure. 

IBM Spectrum Archive EE uses an enhanced version of the IBM Spectrum Archive LE, which 
is referred to as the IBM Spectrum Archive LE+ component, for the movement of files to and 
from tape devices. The scale-out architecture of IBM Spectrum Archive EE can add nodes 
and tape devices as needed to satisfy bandwidth requirements between IBM Spectrum Scale 
and the IBM Spectrum Archive EE tape tier.

Low-cost storage tier, data migration, and archive needs that are described in the following 
use cases can benefit from IBM Spectrum Archive EE:

� Operational storage 

Provides a low-cost, scalable tape storage tier.

� Active archive

A local or remote IBM Spectrum Archive EE node that serves as a migration target for 
IBM Spectrum Scale and transparently archives data to tape based on policies that are set 
by the user.
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The following IBM Spectrum Archive EE characteristics cover a broad base of integrated 
storage management software with leading tape technology and the highly scalable IBM tape 
libraries:

� Integrates with IBM Spectrum Scale by supporting file-level migration and recall with an 
innovative database-less storage of metadata.

� Provides a scale-out architecture that supports multiple IBM Spectrum Archive EE nodes 
that share tape inventory with load balancing over multiple tape drives and nodes.

� Enables tape cartridge pooling and data exchange for IBM Spectrum Archive EE tape tier 
management:

– Tape cartridge pooling enables the user to group data on sets of tape cartridges.

– Multiple copies of files can be written on different tape cartridge pools, including 
different tape libraries in different locations.

– Supports tape cartridge export with and without the removal of file metadata from IBM 
Spectrum Scale.

– Supports tape cartridge import with pre-population of file metadata in IBM Spectrum 
Scale.

Furthermore, IBM Spectrum Archive EE provides the following key benefits:

� A low-cost storage tier in an IBM Spectrum Scale environment.

� An active archive or big data repository for long-term storage of data that requires file 
system access to that content.

� File-based storage in the LTFS tape format that is open, self-describing, portable, and 
interchangeable across platforms.

� Lowers capital expenditure and operational expenditure costs by using cost-effective and 
energy-efficient tape media without dependencies on external server hardware or 
software.

� Enables the retention of data on tape media for long-term preservation (10+ years).

� Provides portability for large amounts of data by bulk transfer of tape cartridges between 
sites for disaster recovery, and the initial synchronization of two IBM Spectrum Scale sites 
by using open-format, portable, and self-describing tapes.

� Migration of data to newer tape or newer technology that is managed by IBM Spectrum 
Scale.

� Provides ease of management for operational and active archive storage.

� Expand archive capacity by adding and provisioning media without affecting the 
availability of data in the pool.

4.1.3  IBM Cloud Object Storage

As hybrid cloud adoption continues to accelerate in the healthcare and life sciences market, 
customers are incorporating more object storage in their data infrastructure for new AI and 
Big Data requirements. IBM Cloud Object Storage is a marketing leading object storage 
solution in the data center that meets many of these workload requirements, and can also be 
used as a server in the IBM Cloud. 

The IBM system provides data that is accessible from any location with concurrent parallel 
access and the simplicity to lower cost for growing and modern data requirements. With 
proven scalability to exabyte (EB) capacity and the ability to start as small as 72 TB, this 
solution provides a strong foundation to keep data safe and available for many years.
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IBM Cloud Object Storage delivers the following key benefits:

� Flexibility. Security and control in your data center, or offloaded operational costs using the 
public cloud

� Security. Built in air gap, data encryption, and lockable WORM (write once, read many) 
data 

� Data Protection. A geo-dispersed protection layer for demanding SLAs

� Lower Costs. Designed to easily scale-up and scale-out with the simplicity and investment 
protection to minimize costly upgrades

� Simplicity. Proven scalability from TB to EB with simplicity to scale online

With IBM industry-leading object storage platform, you can select the best configuration and 
approach to address the unique application, data, and workload requirements for your 
business. Start with as few as 3 nodes and grow to 1000s of share-nothing nodes seamlessly, 
without any downtime and with investment protection. 

With a unique access layer for increased throughput and performance, the system can be 
configured from multiple demanding workloads and configurations. The platform uses current 
and new modern applications, such as containers, micro services, and cloud native apps. 

IBM Cloud Object Storage is available in the following modes:

� Private on-premises object storage
� Dedicated object storage (single-tenant)
� Public object storage (multi-tenant)
� Hybrid object storage (a mix of on-premises, dedicated, or public offerings)

IBM Cloud Object Storage gives you the choice to deploy object storage on-premises, in the 
public cloud, or both on-premises and in the cloud in a hybrid solution. In addition, public 
cloud services (Standard Object Storage and Vault Object Storage) can be configured in 
either a Regional or Cross-Regional model, providing even more choices when it comes to 
the level of data protection and resiliency that you need for workloads.

IBM Cloud Object Storage is a dispersed storage mechanism that uses a cluster of storage 
nodes to store pieces of the data across the available nodes. IBM Cloud Object Storage uses 
an Information Dispersal Algorithm (IDA) to break files into unrecognizable slices that are 
then distributed to the storage nodes. 

No single node has all of the data, which makes it safe and less susceptible to data breaches, 
while at the same time needing only a subset of the storage nodes to be available to retrieve 
fully the stored data. This ability to reassemble all of the data from a subset of the chunks 
dramatically increases the tolerance to node and disk failures.

The IBM Cloud Object Storage architecture is composed of three functional components. 
Each of these components runs ClevOS software that can be deployed on compatible, 
industry-standard hardware. The three components include:

� IBM Cloud Object Storage Manager

IBM Cloud Object Storage Manager provides an out-of-band management interface that is 
used for administrative tasks, such as system configuration, storage provisioning, and 
monitoring the health and performance of the system.

� IBM Cloud Object Storage Accesser®

IBM Cloud Object Storage Accesser imports and reads data, encrypting/encoding data on 
import, and decrypting/decoding data on read. It is a stateless component that presents 
the storage interfaces to the client applications, and transforms data by using an IDA.
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� IBM Cloud Object Storage Slicestor®

The IBM Cloud Object Storage Slicestor node is primarily responsible for storage of the 
data slices. It receives data from the IBM Cloud Object Storage Accesser on import, and 
returns data to the IBM Cloud Object Storage Accesser as required by reads.

4.1.4  IBM Spectrum Discover

IBM Spectrum Discover is modern metadata management software that provides data insight 
for exabyte-scale unstructured storage. IBM Spectrum Discover easily connects to multiple 
file and object storage systems both on-premises and in the cloud to rapidly ingest, 
consolidate and index metadata for billions of files and objects, providing a rich metadata 
layer on top of these storage sources. This metadata enables data scientists, storage 
administrators, and data stewards to efficiently manage, classify and gain insights from 
massive amounts of unstructured data.

For more information about Spectrum Discover, please refer to the following website:

https://www.ibm.com/us-en/marketplace/spectrum-discover

Challenges associated with processing unstructured data is particular prevalent in the 
healthcare industry. The following published article discusses the issue and explains how IBM 
Spectrum Discover is helping with these challenges:

https://bit.ly/2wMJ4DQ

4.2  IBM Spectrum Computing

The workload management layer dynamically and elastically allocates computational tasks 
across compute servers in a manner that is transparent to the user. It consists of multiple 
coherent workflow schedulers that are coordinated to place diverse compute jobs on local 
and remote clusters in an efficient and cost-effective way.

IBM resource-aware and policy-based schedulers include industry-leading IBM Spectrum 
LSF (for HPC batch workloads), IBM Spectrum Conductor (for Spark workloads), IBM 
Spectrum Conductor Deep Learning Impact, and IBM Watson Machine Learning Accelerator 
for Enterprise AI (for deep learning workloads). These schedulers are tightly integrated: If one 
type of workload is using only a few resources in a cluster, then the other workload types can 
fully use the remaining resources in that cluster. 

The flexibility and elasticity of server use across these schedulers eliminates the need for IT 
organizations to provide dedicated clusters for each of the workload types. When serving a 
multitenant environment, these schedulers protect individual tenants through secure isolation 
and role-based access control (RBAC).They make it possible for workloads to be distributed 
seamlessly across multiple physical and cloud environments, and they support the 
distribution of workloads that are deployed in Docker and other container technologies.

4.2.1  IBM Spectrum LSF Suite

IBM Spectrum LSF Suite provides a tightly integrated solution for HPC delivering systems 
and workload management designed to increase the productivity of users and utilization of 
hardware, at the same time controlling system management costs. It supports 
high-performance and high-throughput workloads through to big data, GPU machine 
learning, and containerized workloads, both on-premises and in the cloud.
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IBM Spectrum LSF has been selected as the preferred workload management system by 
large genome analysis organizations for its ability to routinely orchestrate hundreds of 
thousands of jobs that are submitted in batch, and for its ability to readily scale with growing 
user demand. Clients worldwide are using technical computing environments that are 
supported by IBM Spectrum LSF to run hundreds of genomic workloads, including 
Burrows-Wheeler Aligner (BWA), SAMtools, Picard, Broad Institute Genome Analysis Toolkit 
(GATK), Isaac, CASAVA, and other frequently used pipelines for genomic analysis. 

IBM Spectrum LSF Suite is available in three versions with progressively greater capabilities 
suitable for single clusters through to the largest supercomputers, as shown in Figure 4-1.

Figure 4-1   IBM Spectrum LSF Suite

User productivity
IBM Spectrum LSF provides a superior user experience through a simple and intuitive 
web-based interface for submitting, managing, and monitoring jobs. Application-specific 
templates enable users to run jobs without having to create customer scripts. Additionally, 
intuitive, self-documenting scripting guidelines help simplify the creation of additional job 
submission templates, resulting in reduced setup time at the same time minimizing user 
errors during workload submissions.

Ease of use is further extended by the availability of job-monitoring mobile clients for Google 
Android and Apple iOS platforms, and as an integrated client for Microsoft Windows 
environments for job management and a RESTful API. These ease-of-use features enable 
organizations to drive productivity by hiding complexity, with interfaces that enables domain 
experts to focus on research rather than IT.

Computational workflows
Clients that are interested in personalized healthcare research have taken advantage of the 
workflow management capabilities provided by the IBM Spectrum LSF family. These clients 
use this tool to simplify the process of writing genomic workflow scripts that transform raw 
data from next-generation sequencers (in the FASTQ format) into variant files (for example, 
Variant Call File (VCF), SNV, and CV) for downstream analysis. This makes it possible for 
bioinformaticians to share workflows with selected users who do not have formal experience.
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Additionally, organizations using Common Workflow Language (CWL) for workflows can run 
these workflows on IBM Spectrum LSF with support provided by the CWLEXEC open source 
project(https://github.com/IBMSpectrumComputing/cwlexec). This provides a smooth 
integration of CWL workflows with IBM Spectrum LSF, benefiting from high efficiency, 
scalability, self-healing of workflows, and support for user-specified options, while keeping 
CWL definitions portable.

Containerized workloads
IBM Spectrum LSF provides support for organizations that are using container technologies 
to help streamline the building, testing, and shipping of applications, which enables an 
application stack to be consistently deployed both on-premises and in the cloud. A 
generalized interface provides support for Docker, Shifter, and Singularity container 
technologies. 

Containerized jobs submitted to IBM Spectrum LSF benefit from resource binding, interactive 
and parallel job support, and reliability from automatically rerunning containers during 
failures. Additionally, access controls enable administrators to define which container images 
can be run in the environment.

Hybrid cloud
The majority of HPC environments serve groups of users potentially working on multiple 
projects with differing priorities and deadlines. Situations occur where multiple users, projects, 
and applications outstrip the available resources, leading to costly delays in time to results. To 
address this, organizations are increasingly turning to hybrid-cloud solutions to address these 
peaks and valleys in demand for computing resources. 

IBM Spectrum LSF provides advanced hybrid-cloud capabilities, enabling workloads to be 
forwarded to multiple clouds with support for different cloud providers, and data to be 
automatically staged to or from the cloud. By dynamically provisioning external cloud 
resources in response to workload demands, IBM Spectrum LSF enables organizations to 
intelligently and transparently control the use of these cloud resources, so that you only pay 
for what you use. 

GPU-aware
GPU-accelerated computing is now commonplace in HPC environments, and GPU support is 
emerging in an ever-increasing number of genomics and life science applications. As with any 
other resources in a computing environment, GPUs must be intelligently managed and 
utilized for maximum effectiveness. IBM Spectrum LSF provides a number of advanced 
capabilities supporting NVIDIA GPUs: 

� GPUs as a schedulable resource

� Reporting on GPU utilization

� CPU-GPU affinity

� Enforcement of GPU allocations by way of cgroup

� GPU power management and boost control

� NVIDIA Multi-Process Service (MPS) support

� NVIDIA Data Center GPU Manager (DCGM) support for enhanced job accounting and 
health check

� Extended syntax for supporting GPU workloads and monitoring
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4.2.2  IBM Spectrum Conductor

IBM Spectrum Conductor is an enterprise-class, multitenant solution for Apache Spark and 
Anaconda/Python. It provides a framework to enable other application integrations, sharing 
resources dynamically. 

It specifically enables your organization to deploy Apache Spark-based and Python-based 
applications efficiently and effectively, supporting multiple concurrent instances and versions. 
It can help increase performance and scale, optimize resource usage, and eliminate silos of 
resources that otherwise be tied to multiple, separate Apache Spark or Anaconda or Python 
implementations.

Apache Spark
Apache Spark is a common application framework used by individuals conducting big data, AI 
and deep learning, computational research in personalized healthcare, and other areas of 
biomedical science. Spark is also a disruptive technology with huge momentum. It dominates 
all other Apache open source projects in terms of community activity. 

Spark is generating significant interest as a big data analytics solution because of its 
perceived advantages over Hadoop MapReduce. It runs faster than MapReduce (especially 
when run in-memory) and offers easy-to-use APIs for a variety of programming languages. It 
also includes a rich set of high-level tools, including Spark SQL, machine learning, graph 
processing, and stream processing capabilities.

Apache Spark requires a resource manager and can interface with various distributed storage 
models. IBM Spectrum Conductor addresses both of these requirements: 

� Incorporates a generalized resource manager that provides a shared-service backbone 
for a broad portfolio of distributed software frameworks

� Enables a wide variety of applications to share resources and coexist on the same 
infrastructure 

The offering includes a Spark distribution, providing a robust end-to-end solution for 
organizations that are considering Spark deployment, both for exploratory projects and 
in-production environments.

Benefits
IBM Spectrum Conductor provides the following benefits:

� Helps obtain business insights from data while reducing both capital and operational 
expenses

� Can lower costs by using a service orchestration framework for distributed Apache Spark 
workloads to optimize resource utilization

� Improves performance and efficiency with granular and dynamic resource allocation

� Simplifies administration with a consolidated framework for Apache Spark deployment, 
monitoring, and reporting

� Helps future-proof data centers with multidimensional scaling, including independent 
scaling of compute and storage infrastructure

� Enables a wide variety of applications to share resources and coexist on the same 
infrastructure

� Simplifies Spark deployment without requiring the complexity of a Hadoop stack

� Provides flexible, efficient management of data when deployed using IBM Spectrum Scale
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Unique differentiators
IBM Spectrum Conductor is designed to enable organizations to deploy Spark efficiently, 
effectively, and confidently. Unlike other offerings that require piecemeal assembly of 
components or a full Hadoop stack, IBM Spectrum Conductor is a robust offering that 
accelerates results with policy-based, workload-aware resource management. The solution 
provides an IBM-supported framework for workload management, monitoring, reporting, and 
end-to-end security.

It also includes a generalized resource manager that provides a shared-service backbone for 
a broad portfolio of distributed software frameworks. IBM Spectrum Conductor, when 
combined with IBM Spectrum Scale for storage management, is POSIX-compliant, unlike 
open-source HDFS, and provides significant storage efficiencies compared to HDFS. 
Nevertheless, IBM Spectrum Conductor also supports HDFS and other storage management 
technologies for clients who prefer alternative options.

Collaboration
IBM Spectrum Conductor supports and deploys with the Spark instances. Notebooks provide 
an interactive environment for data analysis, enabling you to explore and visualize data 
analytics from your browser.

Create shared Spark batch applications, enabling multiple users to submit Spark jobs to an 
application and use the same Resilient Distributed Datasets (RDDs). The benefit is that, 
through the use of new Spark jobs, multiple users can analyze the same RDDs without having 
to recompute them multiple times in new Spark apps. Shared Spark batch apps use an API to 
create and manage sharable RDDs in a Spark context. The sharable RDD API provides a 
data caching layer, wherein the shared RDD data is computed after and cached for reuse.

The Spark RDD abstraction is a collection of partitioned data elements that can be operated 
on in parallel. RDDs work at the application level, wherein each application manages its own 
RDDs.

Faster and consistent performance
IBM Spectrum Conductor includes an advanced scheduler, which provides high-performance 
resource and workload managers. The logic behind the scheduler controls multitenancy, 
enabling multiple concurrent and different versions of an application to exist in a single 
cluster. It also controls the orchestration and execution of each task, and delivers superior 
performance compared to Mesos and YARN:1 

� 5 - 88% higher throughput than Apache Mesos
� 0 - 224% higher throughput than Apache YARN

Enterprise security
Security in IBM Spectrum Conductor has been proven in the field by being deployed in highly 
regulated industries, such as financial services and other life science research environments. 
Security is implemented around the following principles:

� Authentication. Support for Kerberos, Siteminder, AD/LDAP, and operating system 
authentication, including Kerberos authentication for HDFS

� Authorization. Fine-grained access control, ACL RBAC, Spark binary lifecycle, notebook 
updates, deployments, resource plans, reporting, monitoring, log retrieval, and execution

� Impersonation. Allow different tenants to define production execution users

� Encryption. SSL and authentication between all daemons 

1  Source: https://stacresearch.com/news/2017/05/19/IBM170405
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4.3  IBM Power System AC922 for HPC

The IBM Power System AC922 is the next generation of the IBM POWER® processor-based 
systems that are specifically designed for DL and AI, HPDA, and HPC.

The system is co-designed with the OpenPOWER Foundation members and delivers the 
latest technologies available for HPC and improves the movement of data from memory to 
GPUs and back, which enables faster and lower latency data processing. This massive 
computing capacity is packed into just 2Us of rack space. To accommodate the thermal 
challenges inherent with large deployments, IBM offers two models with different cooling 
implementations: The 8335-GTH is air-cooled, and the 8335-GTX is water-cooled.

4.3.1  Accelerated computing with IBM POWER9 processor-based systems

IBM Systems is committed to providing superior performance for the most challenging 
computational workloads. The IBM strategy for achieving this goal is based on the 
observation that next-generation HPC systems will need to support both data-intensive 
workloads and compute-intensive workloads.

As requirements for traditional HPC and newer big data analytics converge, system 
throughput depends on I/O performance improvements at the level of the central processing 
units (CPUs), and on minimizing data movement within the architecture. It also depends on 
tightening the integration of the CPU with hardware accelerators, such as GPUs and Field 
Programmable Gate Arrays (FPGAs), which are often used to dramatically speed up user 
applications.

4.3.2  OpenPOWER Foundation

In 2013, IBM began open source licensing of products that are related to the IBM Power 
Architecture® to create an alternative to proprietary solutions and spur innovation in 
computing technology. IBM initiated the creation of the OpenPOWER Foundation, which is a 
technical community of more than 130 commercial and academic organizations collaborating 
on the development of IBM POWER processor-based solutions that better meet specific 
business needs. Innovations arising from OpenPOWER collaborations include custom 
systems for workload acceleration by using GPUs, FPGAs, and advanced I/O.

4.3.3  OpenPOWER processors

OpenPOWER systems are being designed to support compute and data intensive workloads, 
such as machine learning and deep neural networks. IBM POWER9 processors have 
simultaneous multithreading (SMT), which enables up to eight hardware threads from a single 
physical core. It also employs the most advanced memory subsystem available to achieve 
leading-edge performance, by using many on- and off-chip memory caches. This processor 
design reduces memory latency and generates high bandwidth for memory and I/O.

For more information about the IBM POWER9 processors, see IBM Power System AC922 
Introduction and Technical Overview, REDP-5472, at the following website:

http://www.redbooks.ibm.com/abstracts/redp5472.html
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4.3.4  Recent advancements

The following features are designed to augment the performance of POWER9 systems:

� IBM CAPI2 is the evolution of CAPI that defines a coherent accelerator interface structure 
for attaching special processing devices to the POWER9 processor bus. As with the 
original CAPI, CAPI2 can attach accelerators that have coherent shared memory access 
with the processors in the server. CAPI2 can also share full virtual address translation with 
these processors by using standard PCIe Gen4 buses with twice the bandwidth compared 
to the previous generation.

� Applications can have customized functions in Field Programmable Gate Arrays (FPGAs), 
and queue work requests directly in shared memory queues to the FPGA. Applications 
can also have customized functions by using the same effective addresses (pointers) that 
they use for any threads running on a host processor. From a practical perspective, CAPI 
enables a specialized hardware accelerator to be seen as an extra processor in the 
system, with access to the main system memory and coherent communication with other 
processors in the system.

� NVLink 2.0 is the NVIDIA new generation high-speed interconnect technology for 
GPU-accelerated computing. Supported on SXM2-based Tesla V100 accelerator system 
boards, NVLink increases performance for both GPU-to-GPU communications and for 
GPU access to system memory.

� Support for the GPU ISA enables programs running on NVLink-connected GPUs to run 
directly on data in the memory of another GPU and on local memory. GPUs can also 
perform atomic memory operations on remote GPU memory addresses, enabling much 
tighter data sharing and improved application scaling.

4.3.5  Applications

POWER9 processor-based servers are supported by standard Linux distributions, making it 
easy to port existing codes to the platform. Preferred applications in the healthcare and life 
sciences sector, such as GATK, BWA, SAMtools, BLAST, MuTect2, and tranSMART, already 
are enabled and optimized on IBM PowerLinux.

Bioinformatics specialists within IBM Systems, along with IBM Business Partners in the 
healthcare and life science industry, are actively engaged in porting and optimizing the 
performance of more biomedical research codes on POWER. More than 100 open source 
applications are enabled on POWER9.

Within research fields that are relevant to personalized healthcare, such as genomics and 
bioinformatics, adoption of GPU-enabled workloads has been slow; however, these 
workloads appear to be gaining traction. An increasing number of organizations conducting 
biomedical research are applying deep learning techniques to uncover predictive patterns 
within large sets of often unstructured data, such as biomedical images and time-varying 
physiological signals. In support of such workloads, IBM and NVIDIA are collaborating on IBM 
Watson Machine Learning Accelerator for Enterprise AI, a new deep learning toolkit. 

PowerAI is an easy-to-deploy deep learning platform that delivers popular deep learning 
frameworks, including Caffe, Torch, and Theano, within the IBM Power Architecture. IBM has 
optimized each of these deep learning software distributions to take advantage of the high 
bandwidth that is offered by the IBM POWER9 processor and NVIDIA NVLink 2.0 
interconnect. The toolkit also uses NVIDIA GPUDL libraries, including cuDNN, cuBLAS, and 
NCCL, to deliver multi-GPU acceleration on IBM servers.
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IBM and NVIDIA partnered in integrating IBM POWER systems with NVIDIA GPUs and the 
enablement of GPU-accelerated applications and workloads. The computational capability 
that is provided by the combination of NVIDIA Tesla GPUs and IBM Power Systems servers 
enables workloads from scientific, technical, and HPC to run on data center hardware.

This computational capability is built on top of massively parallel and multithreaded cores with 
NVIDIA Tesla GPUs and IBM POWER architecture processors, where processor-intensive 
operations are offloaded to GPUs and coupled with the system’s high memory-hierarchy 
bandwidth and I/O throughput.
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Chapter 5. Use cases

This chapter describes use cases and contains the following topics:

� The Broad Institute Genome Analysis Toolkit (GATK)
� Expanding IBM Reference Architecture for High-Performance Data Analytics into medical 

imaging

5
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5.1  The Broad Institute Genome Analysis Toolkit (GATK)

The Broad Institute GATK is a set of applications that is used to create multi-step workflows 
for variant discovery analysis of both germline and somatic genomes. Each step has its own 
set of tools. The output from each step is the input to the next step. There are a variety of 
GATK-based workflows that are used in the field. For this paper, the examples profile the 
workflow that is documented in the Broad Institute GATK best practices (as shown in 
Figure 5-1).

Figure 5-1   GATK based workflows

To profile that workflow, the following environment was used:

� A single IBM POWER8® node (IBM 8247-22L with SMT8) with 256 GB of memory to 
execute the whole workflow

� 1x IBM Elastic Storage Server (ESS) GS4 with SSDs (>= 23 GBps write bandwidth and 
>= 30 GBps read bandwidth)

� Dual-rail FDR InfiniBand aggregating to ~13 GBps

� GATK pipeline execution using Whole Genome Sequence (WGS) input data set with B37 
reference data set

We set SMT8 on the Compute Nodes based on Table 3 in “A guide to GATK4 best practice 
pipeline performance and optimization on the IBM OpenPOWER system” 
(https://www.ibm.com/downloads/cas/ZJQD0QAL). Furthermore, BWA-Mem required SMT8 to 
launch 160 threads on a node.

Figure 5-1 is a four-step workflow that requires running six applications. The profiling was 
performed with the Solexa WGS data set provided by the Broad Institute. 

Note: This profiling setup is different than the example configuration. However, the insights 
gained by the profiling influenced the example configuration.

Mapping to reference genome using BWA MEM

Sort SAM and mark duplicate using Picard or sam2bam

Recalibrate bases quality scores with GATK BQSR
and PrintReads

Call variants with GATK HaploytypeCaller
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Figure 5-2 also shows the run time achieved on the profiling environment. 

Figure 5-2   Execution time on the profiling environment using the Solexa WGS Broad data set

Solexa WGS Broad dataset 

with b37 reference

BWA-Mem 303 min 47 sec

sam2bam 
(storage mode)

35 min 53 sec

GATK BaseRecalibrator 
(java setting -Xmn10g -Xms10g -Xmx10g)

87 min 21 sec

GATK PrintReads
(java setting -Xmn10g -Xms10g -Xmx10g)

97 min 1 sec

GATK HaplotypeCaller
(java setting -Xmn10g -Xms10g -Xmx10g)

261 min 37 sec

GATK mergeVCF
(java setting -Xmn10g -Xms10g -Xmx10g)

0 min 51 sec

� Execution time was measured on the profiling environment 
using the Solexa WGS Broad dataset. The actual throughput or 
performance that any user will experience will vary depending 
upon many factors.
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Table 5-1 summarizes the workload profile of each processing step and shows the run time 
achieved on the profiling environment. The actual throughput or performance that any user 
experiences can vary, depending upon many factors. See Appendix A, “Profiling GATK” on 
page 65 for profiling details.

Table 5-1   Workload profile of each processing step

The analysis of the GATK workflow of the Solexa WGS Broad data set guided the details of 
the design of the compute cluster and the /gpfs/data file system that is served by the storage 
services. In summary, BWA-Mem is CPU-intensive. For optimal performance, run this 
application on nodes with higher core count and higher clock frequency. The sam2bam is 
memory-intensive. It can be run in one of two possible modes: memory mode and storage 
mode.

In our test, sam2bam in storage mode took 35 minutes and 53 seconds to complete. For 
optimal performance, run sam2bam in memory mode on a node with >= 1 TiB of memory. 
The GATK Base Recalibrator and PrintRead steps are memory-intensive. To achieve optimal 
performance, run these application on nodes with >= 512 GiB of memory. 

BWA-Mem sam2bam
(storage mode)

GATK
BaseRecalibrator

GATK
PrintReads

GATK
HaplotypeCaller

GATK
mergeVCF

Run Timea b

a. Execution time was measured on the profiling environment using the Solexa WGS Broad data set. The actual throughput or performance that any 
user will experience will vary depending upon many factors.

b. Java setting -Xmn10g -Xms10g -Xmx10g

303 min 47 sec 35 min 53 sec 87 min 21 sec 97 min 1 sec 261 min 37 sec 0 min 51 sec

CPU Intensive. Close to 
100% CPU 
utilization

~93% (initial 
phase) and
~40% in later 
phases

~70% CPU 
utilization

~70% CPU 
utilization

~40% CPU 
utilization

Less than 1% CPU 
utilization

Memory Low memory 
consumption

Low memory 
consumption

Total of 18 x Java 
threads with each 
thread customized 
with 10 GB → 
180 GB

Total of 18 x Java 
threads with each 
thread customized 
with 10 GB → 
180 GB

Not memory 
intensive

Not memory 
intensive

File data I/O 
access 
pattern

Pattern of writes 
followed by reads, 
Predominantly 
sequential I/O.

Write I/O 
predominantly 
sequential I/O. 
Read I/O is random 
access in units of 
512 KiB.

Predominantly 
read intensive. 
Read is mix of 
sequential and 
random I/O.

Mix of read and 
write. Write I/O is 
mostly 512 KiB with 
mix of sequential 
and random. Read 
is mostly 
sequential.

Mix of read and 
write. Write I/O is 
mix of sequential 
and random. Read 
is mostly 
sequential.

Mix of read and 
write. Read and 
write I/O is 
predominantly 
sequential I/O.

File I/O 
bandwidth

<= 200 MBps 
(read and write)

Write < 2.5 GBps. 
Sustained read < 
300 MBps. High 
degree of pagepool 
cache hits during 
reads (< 36 GBps).

<= 100 MBps 
(read and write)

Write < 150 MBps 
and read < 75 MBps

Write < 100 MBps 
and read < 100 
MBps

Write < 1.5 GBps 
and read < 2 GBps

File 
Metadata

<=2 inode updates Initial phase <= 60 
inode updates. 
Later phase, <=2 
inode updates.

~24 file open and 
~24 file closes.

~24 file open and 
~24 file closes.

~20 file open and 
~20 file closes.

~2 file open and ~2 
file closes.

Output file or 
files

Single output file 
(*.sam) <= 380 GB 
file size

Two output files: 
~77 GB (.bam) and 
~9 MB (.bam.bai).

Total of 52 files: 26 
x “.table.log-4” files 
(<200 KB) and 26 
x “*.table” files (< 
300 KB)

Total of 78 files: 26 x 
“.recal_reads*.bam” 
files (< 15 GB), 26 x 
“*.bai” files (< 750 
KB), and 26 x 
“*.recal_reads*.ba
m.log” files (< 200 
KB)

Total of 78 files: 26 
x 
“.raw_variants*.vcf” 
files (< 6 GB), 26 x 
“*.raw_variants*.vcf
.log” files (< 400 
KB), and 26 x 
“*.raw_variants*.vcf
.idx” files (< 20 KB)

Single output file 
(*.raw_variants.vcf) 
with ~66 GiB file 
size
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An initial mention of the file systems is provided here because the GATK performance profile 
influenced the choices. Place the file system metadata and data on separate storage pools. 
Configure the data storage pool with a larger IBM Spectrum Scale File System block size (8 
MiB). Because the IBM Spectrum Scale File Systems are remotely mounted on the compute 
cluster from the storage services, the IBM Spectrum Scale networking must be over a 
low-latency and high throughput network interface. 

Additional information can be read in the following document:

� A guide to GATK4 best practice pipeline performance and optimization on the IBM 
OpenPOWER system

https://www.ibm.com/downloads/cas/ZJQD0QAL

5.2  Expanding IBM Reference Architecture for 
High-Performance Data Analytics into medical imaging

Medical imaging is a vital tool for diagnosis, which is creating major analytical and data 
challenges as more sophisticated methods are used to extract clinical insights. With deep 
learning supported by IBM software-defined infrastructure and high-performance computing 
solutions, researchers are analyzing brain scans to identify brain tumors faster and more 
accurately, helping physicians improve patient care.

5.2.1  Harnessing AI to transform diagnosis and treatment of brain cancer

Researchers at two universities sought to enhance magnetic resonance imaging (MRI) scan 
analysis, to enable physicians to use huge amounts of data generated effectively, while at the 
same time keeping scan times short.

Washington University St. Louis and Vanderbilt University deployed IBM solutions to 
accelerate the creation and deployment of deep learning models that fill in the gaps in 
incomplete MRI brain scans:

� Provides 20× faster training of deep learning models than traditional PC environments
� Increases speed and accuracy of diagnosis, enhancing treatments and patient outcomes
� Lowers barriers to deep learning for physicians, addressing the big data skills gap

As stated, the IBM solution trains deep learning models 20 times faster than traditional PC 
environments, enhancing patient outcomes through accurate, fast diagnosis. It provides 
physicians with an entry point to deep learning.

5.2.2  Pushing the boundaries of traditional medicine

With medical imaging tools, physicians can see inside patients’ bodies without lifting a 
scalpel. By enabling clinicians to identify evidence of disease and injury non-invasively, it is no 
surprise that advances in this field have had a revolutionary impact on the ability to diagnose 
and treat patients.

Recent gains in computing power have made it possible to capture more detailed medical 
images, but making sense of the growing volumes of data is a challenge. Applying AI 
capabilities, and in particular deep learning, can potentially overcome these obstacles. 
However, deep learning is an area where skills are in short supply in every industry.
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Also, capturing more detailed images often involves longer scanning times. This can be 
uncomfortable for patients, and it ties up hospital resources and slows down the delivery of 
health care. To get around this, clinical engineers have developed techniques to minimize 
scanning times by generating under-sampled, or incomplete, images. The trade-off is that 
these images can include distortions that prevent accurate diagnoses.

Researchers at the Washington University St. Louis School of Medicine and the Vanderbilt 
University Institute of Imaging Science wanted to bring high-performance analytics 
capabilities to the medical imaging fields, with low barriers to entry for physicians with little to 
no previous experience in this area. 

Yong Wang, PhD, Assistant Professor of Gynecology and Obstetrics, Radiology, and 
Biomedical Engineering at Washington University St. Louis, and Xiaoyu Jiang, PhD, 
Research Fellow at Vanderbilt University Institute of Imaging Science, teamed up to extract 
insights from MRI scans more efficiently. By doing so, they created an effective method of 
using under-sampled scans for medical imaging.

Yong Wang picks up the story: “We saw an opportunity to develop a predictive solution to fill 
in the gaps in incomplete MRI images. Because of the vast amounts of data involved, we 
knew that AI, and more specifically deep learning, held the key to success.”

To create a practical tool that helps rather than hinder physicians, the research team knew 
that the solution needed to incorporate sophisticated data analytics technologies alongside a 
short learning curve. 

Yong Wang adds: “Traditionally, AI innovation has been led by specialist computing 
engineers. But as relative newcomers to this field, we wanted to find an easy entry point for AI 
both for us, and for the eventual users of the solution: physicians. In other words, we needed 
a tool that can be used by someone with no prior coding knowledge to augment their ability to 
diagnose and treat patients immediately, which can be optimized once they got more familiar 
with the technology. On top of that, we needed a computing backbone with the processing 
power to provide results fast.”

5.2.3  Diving into deep learning

First on the agenda for the researchers: find an IT infrastructure that can enable them to fully 
exploit the value of big data. When analyzing MRI images, both patient outcomes and 
experiences are at stake, so insights are required as soon as possible.

Xiaoyu Jiang sums up the challenge: “From an IT perspective, we were seeking technology 
that can set new records for speed, scalability, flexibility and efficiency. It needed to help us 
deal with data that is growing fast, in volume, variety and complexity across siloed systems. 
And to provide usable results in the short timelines demanded by clinical settings, we wanted 
to be able to apply and automate deep learning workflows.”

Washington University St. Louis School of Medicine and the Vanderbilt University Institute of 
Imaging Science deployed IBM Spectrum Conductor Deep Learning Impact to get started 
with deep learning faster. A software-defined infrastructure solution, IBM Spectrum 
Conductor Deep Learning Impact helps to automate and accelerate system resource 
management, distributed processing and prototyping. The team also implemented IBM Power 
System S822LC servers to provide the performance required to support AI workloads.
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Xiaoyu Jiang says, “IBM Spectrum Conductor Deep Learning Impact gives us a full workflow 
for deep learning, broken down step by step, making it as easy as ordering your shopping 
online. Even a beginner like me can use it to start exploring data immediately. It simplifies 
prototyping and hyperparameter tuning so you can get your models ready for production 
sooner. And IBM Power Architecture is the ideal platform for deep learning, allowing us to 
experiment at scale.”

Using IBM Spectrum Conductor Deep Learning Impact, the research team can upload data in 
multiple file formats. TFRecord from TensorFlow was the researchers’ format of choice, and 
they uploaded vast numbers of previous brain scan TFRecord image files to the system. The 
team took advantage of object detection and classification features to prepare the data, 
before uploading training models built using Python.

“With IBM Spectrum Conductor Deep Learning Impact, we can monitor and adjust our models 
in real-time, and optimize them very quickly,” explains Xiaoyu Jiang. “We can also keep track 
of hardware utilization, which enables us to share resources more effectively across the 
team. Once we’ve finished refining our training models, we can apply them to under-sampled 
images to predict what the missing parts are, and reconstruct them with a high degree of 
accuracy.”

5.2.4  Giving physicians the tools to excel

Using the IBM platform, Washington University St. Louis School of Medicine and the 
Vanderbilt University Institute of Imaging Science developed an effective deep learning 
solution for the enhancement of MRI brain scans.

Xiaoyu Jiang comments: “IBM Spectrum Computing and Power Systems solutions made 
short work of training our models with 1,300 MRI images, finishing in just two hours. On a 
traditional PC, we estimate that this would have taken 20 times as long, so the IBM 
technology is directly responsible for helping us innovate faster.”

The research team’s solution increased the signal-to-noise ratio and reduced the number of 
artifacts in MRI images compared to existing under-sampling techniques. As a result, 
physicians will be able to identify cancerous brain tumors with greater precision. Yong Wang 
says: “By filling in the gaps in under-sampled MRI images with help from IBM solutions, we 
can support better diagnosis and assessment of treatments.”

The research team expects to reduce time-to-diagnosis for patients using its deep learning 
models, yielding benefits for both patients and healthcare organizations. Next, the 
researchers will feed more data into the network, including images featuring a variety of brain 
structures and tumors.

“Supported by IBM solutions, we’ve been able to recalibrate under-sampled images so that 
they match the level of detail you would find in a scan that took twice the time,” explains 
Xiaoyu Jiang. “For patients, this means less time spent in MRI machines with no impact on 
the care they receive. It frees up healthcare equipment and staff, so they can accommodate 
more patients.”

Although the research study at Washington University St. Louis School of Medicine and the 
Vanderbilt University Institute of Imaging Science was focused on MRI scans, the project has 
broader relevance. For example, a similar approach can enhance ultrasound scanning to help 
prevent premature births.
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Yong Wang sums up: “Combined, our research and IBM technology brings cutting-edge deep 
learning capabilities within reach of physicians so that they can give patients higher-quality 
care. We are inventing a whole new imaging system that directly enables better diagnosis 
and disease monitoring, so physicians can select the right treatment plans and evaluate 
patients’ progress. IBM provided a skilled team that supported us every step of the way, and 
their backing is essential to researchers like us that deal with data from hundreds of patients 
each and every day.”

For more details about the case study, see 6.7, “Washington University St. Louis and 
Vanderbilt University” on page 62.
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Chapter 6. Case studies

This chapter illustrates the following case studies:

� Sidra Medicine

� Amsterdam UMC

� L7 Informatics

� University of Birmingham

� Thomas Jefferson University

� Biotechnology and Biomedicine Center of the Czech Academy of Sciences and Charles 
University: BIOCEV

� Washington University St. Louis and Vanderbilt University

6
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6.1  Sidra Medicine

Supporting game-changing genomics research to improve the health of a nation.

Per this announcement letter, IBM is collaborating and providing solutions for a compute and 
storage infrastructure for Sidra Medical and Research Center (Sidra). The goal of Sidra 
Medical and Research Center is to be a research and education institution, in addition to a 
world-class hospital focusing on the health and well-being of children and women. 

For more information about the IBM collaboration to provide the platform that is deployed by 
Sidra to advance Qatar’s biomedical research capabilities, see this press release.

This is not the first collaboration between Sidra and IBM. One of the first programs that Sidra 
used from the IBM technology platform was for the Qatar Genome Project (QGP).

The goal of this section is to describe the Sidra Medical and Research Center Advancing 
Qatar’s Biomedical Research Capabilities with IBM solutions. For more information about this 
solution, see this YouTube video.

6.1.1  About Sidra

Sidra focuses on three pillars:

� Healthcare
� Education
� Biomedical research

There has been an increase in obesity, diabetes, and cardiovascular-related diseases. Sidra 
has discovered new insights, which is improving the treatment of patients.

Sidra had to adjust the way it approached healthcare, research, and education to 
accommodate the need for personalized healthcare. Genomic care is important because it 
can be tailored to a specific treatment that is based on the genomic signature of the patient. In 
the past, a treatment was generic; now, a treatment is customized for each patient.

6.1.2  The Qatar Genome Project focuses on population health and better 
treatments

QGP is the first initiative in the world where a sequence of the entire population is done. Sidra 
is the provider for the sequencing and bioinformatics analysis for this project. Until this 
project, only a small subset (of about 350,000 samples total) had been sequenced. Now, you 
can sequence 18,000 samples per year by using the sequencer at Sidra.

The QGP looks at genomic signatures and the disease that fits with that specific genomic 
signature to provide a customized treatment.

“Analyzing hundreds of samples in parallel on a regular basis requires a robust HPC 
system to handle the load properly. From our experience, IBM systems have proven to be 
reliable in helping us address this technical requirement.”

—Dr. Mohamed-Ramzi Temanni, Manager, BioInformatics Technical Group at Sidra 
Medical and Research Center
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The goal of the QGP is to help the researcher answer complex research questions. The 
research starts with a hypothesis where the researcher is trying to understand the importance 
of the genomic factor in the prevalence of a disease. A blood sample moves from the 
biological realm to the digital realm through the sequencing step, and then that data is 
transferred to a HPC cluster. A pipeline and analysis are performed to, for example, specify 
what mutations are responsible or related to the disease.

6.1.3  Personalized medical advances depend on having a unified view

Genomic is not everything. Genomic is taking a snapshot of your gene at a certain point in 
time. But beyond the genome, there are other types of data, such as the RNA-seq, which is 
analyzing the transcriptome (you can also analyze the ribosome). With Ribo-seq, you also 
have information about the metabolome, which is where you look at the metabolite. This data 
tells a story about how the human body is functioning and the status of the disease. You 
combine this different heterogeneous data to gain a better insight about the disease.

When you work with multifactorial diseases, such as obesity, you must account for genomic 
data and other information, such as phenotypical or environmental data, to better understand 
the disease. If you do not account for these factors, it is as though you are watching a video 
without any sound.

For example, if the clinical data is worth one dollar, and the genomic data is worth one dollar, 
combining the two is worth a thousand dollars because the combined data provides much 
better insight into the disease than looking at the data separately. You must combine multiple 
sorts of data, such as combining the phenotypical and genomics data. For example, for a 
multifactorial disease, such as obesity, there are genetic and environmental factors, so 
capturing only the genetic information provides only part of the answer.

Scientists are trying to correlate the genome data and clinical data to find abnormal cases 
that are related to obesity or blood pressure-related activities, which is the reason to study the 
clinical data and genome data together in a single platform. The goal is to build a unique and 
integrated platform to help the researchers analyze their bioinformatics data in an easy and 
efficient way.

6.1.4  Converging high-performance computing, big data, and cognitive 
computing

The Sidra infrastructure is a national resource for other research institutions. The unified 
infrastructure is used for genomic workflow, big data analytics, and machine learning in a 
single platform.

Genomics workloads with high-performance computing
HPC addresses a “one size fits all” approach for many research requirements. An 
application-driven architecture helps you build genomic workflows on HPC, machine learning 
algorithms on big data, and image processing on a centralized infrastructure. An 
application-driven architecture also helps you run multi-disciplinary applications on a single 
infrastructure.

Genomic workloads deal with large amounts of data. Data analysis can take a couple of 
weeks, and if the analysis fails, you must redo the entire workload. A failure adds to the 
number of days to run to complete the job, which adds constraints to meeting deadlines.

There are three key elements that are used to select the best solution for HPC: scalability, 
support, and flexibility.
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Accelerating pipelines with Apache Spark
Apache Spark is ideal for organizing big data and genomic pipelines. There are several 
bioinformatics tools that are integrated into Spark, such as PacBio, Partic-Floor, and Galaxy, 
which improve biomedical pipeline development, and also big data tools, such as Spark, that 
are integrated to help minimize the run time of the pipeline.

6.1.5  Why cognitive computing and IBM

Cognitive computing plays a major role in Sidra’s application development. There are two 
cases: 

� The entire querying mechanism to which a scientist provides a natural language query. 
This mechanism uses IBM cognitive solutions to convert this query into a technical query 
to the system. 

� IBM cognitive solutions help the user by suggesting the best way to submit a job to the 
HPC workload, with the goal of efficiently using the resources to the maximum.

When the user submits an inefficient job, the number of resources are used less, which leads 
to inefficiency. IBM cognitive solutions help resolve those inefficiencies by providing a better 
way of submitting the jobs.

6.1.6  A collaboration

Sidra scientists decided to work with IBM because IBM has solid experience in engineering 
systems. There are many complex problems to solve, and there is a good team of scientists 
with Sidra who know how to deal with those problems. So, the goal of Sidra was to find a 
partner that collaborated with their scientists to address the problem by providing a robust 
solution, and by working hand-in-hand to tackle those problems on both sides.

Sidra collaborated with IBM to build centralized natural resources to address the diversified 
categories of applications, which include a pathogenome project, machine learning, big data 
analytics, and image processing. All these applications must run in a centralized 
infrastructure so that data can move in and around for research requirements.

The project started from the ground up. The team built the entire infrastructure in 
collaboration with IBM. The scientists provided input, and with their experience in combination 
with IBM knowledge, a new robust infrastructure was built that is now used for many projects 
at Sidra, and with many business partners. The Sidra infrastructure is also used as 
nationalized resources for other organizations.

6.1.7  Software-defined infrastructure for all data and workloads

The teams are running diversified projects, such as pathogenome projects, machine learning, 
image processing, and big data, in a single infrastructure (see Figure 2-1 on page 14). The 
customized design infrastructure is suitable for machine learning algorithms and 
image-processing applications.

The sources for image processing are mostly MRI scans and scanning machines, which are 
processed by open source and MATLAB publications. The image-processing applications are 
integrated with MATLAB and open source applications, so they can be processed in a single 
infrastructure.

The data can be moved from HPC to big data analytics. HPC addresses genome data, and 
big data addresses clinical data.
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6.1.8  Faster results with scalability, reliability, and speed

Optimization of the scientific workload is important because pathogenome projects contain 
much data and many samples. Scalability plays a crucial role in pathogenome projects in 
terms of computing, storage, and networking.

IBM Spectrum Computing Solutions are flexible, scalable, and expandable. IBM Systems, 
IBM Storage, and IBM Spectrum Compute Solutions are a key combination to run pipeline 
and bioinformatics tools optimally. IBM Spectrum Computing Solutions provide end-to-end 
solutions for your research requirements. 

Researchers and scientists must run more than a thousand jobs per day. Intelligent resource 
management systems provide scalability, quality of service (QoS), and the best turnaround 
time in the infrastructure. Intelligent resource management systems can be implemented in 
IBM Spectrum LSF. For example, in the last two years, researchers have run 700,000 
genomics jobs in an IBM Spectrum LSF cluster.

By optimizing the different aspects, such as optimizing the population calling and tweaking 
the parameters of IBM Spectrum LSF, the researchers reduced one of the steps from 30 days 
to only four days.

The research team has used this solution for the last three years, and never had any failures 
or outages. The IBM Spectrum LSF cluster is 90 - 100% used, and the number of jobs are 
increasing day by day.

IBM Spectrum LSF RTM and IBM Spectrum LSF Application Center produce reports on 
performance metrics and job slot utilization, and many other reports that help management 
plan the capacity of the HPC cluster. For example, IBM Spectrum LSF RTM helps monitor the 
jobs across the cluster. IBM Spectrum LSF RTM is a dashboard monitoring system where the 
user can log in and check their own jobs that are running on the cluster, and can pull the 
reports, which helps their research.

IBM Spectrum LSF Application Center helps the researchers submit any jobs to the IBM 
Spectrum LSF cluster through a web interface. IBM Spectrum LSF Application Center is a 
tool where the user does not need to remember any IBM Spectrum LSF command-line 
arguments, and it helps any researchers to send a job to the IBM Spectrum LSF cluster.

6.1.9  Adding big data and cognitive computing to high-performance 
computing

IBM Spectrum Computing products integrate HPC and big data workloads in a single 
platform. To support the QGP, IBM Spectrum LSF provides cluster integration with current 
technologies, such as Docker and Open Stack, and includes integration with other big data 
tools.

IBM already has integrated Spark and Docker containers with IBM Spectrum LSF 
successfully, and is integrating IBM Spectrum Conductor with a Spark container for IBM 
Spectrum LSF to optimize the computer sources and applications.

IBM Spectrum Scale helps customize the genomics solution design, HPC capabilities, and 
cognitive computing, and integrates them in a single infrastructure. IBM Spectrum Scale is 
useful for data-intensive applications. 

The sample solution has about 3 petabytes of data. However, IBM Spectrum Scale is a highly 
scalable solution, and compared to other file system options, IBM Spectrum Scale has better 
features and capabilities, is highly integrated, and is more stable.
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Additionally, IBM Spectrum Scale RTM helps downsize the resource requirements for 
applications. IBM provides test fixes in a short period of time.

The genomics solution proof of concept sequenced 3,000 samples, which were successfully 
analyzed, and needed about 1.5 PB of storage.

6.1.10  Future

The field of precision medicine keeps evolving thanks to the revolution that is happening in 
biotechnology, and specifically in the world of sequencer technology, where observations 
show higher data generation, lower cost, and a faster turnaround time to generate the data. 
For scientists, the expectation of an HPC system is to have an innovative technology platform 
that can match the incremental data generation in the biotechnology world so that there is 
rapid and on-time analysis.

The Qatar biomedical informatics division is considered a national resource. This division 
helps other scientists and researchers from other institutes with their bioinformatics and 
research computing needs. In addition, all of these collaborations use the HPC system. 
Scientists and researchers expect HPC systems to provide innovative technology that can 
help them meet their needs in terms of data analysis and ever-increasing rapid data 
generation.

The scientists hope that the current analysis that they are doing will identify variants that 
cause major diseases, which will help them develop personalized and more effective 
treatments.

6.2  Amsterdam UMC

Enabling ground breaking research with scalable, cost-effective storage for big data.

6.2.1  Customer background

In 2019, VU Medical Center (VUmc) and the Academic Medical Center (AMC) joined forces 
as Amsterdam UMC - https://www.vumc.com/. The two Amsterdam academic hospitals are 
working together and have the same goals: keep delivering high-quality patient care, conduct 
ground-breaking scientific research, and provide excellent academic education.

6.2.2  Business challenge

As its unstructured data (including administrative documents, research materials, and 
medical images) exploded, the customer wanted the security, cost-efficiency, and scalability 
of a centralized storage platform.

“Thanks to our work with IBM and E-Storage, we’ve created a secure, scalable storage 
platform to support stakeholders across the organization.” 

—Patrick Dekkers, Storage Specialist, Amsterdam UMC
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6.2.3  Transformation

By using a centralized, scalable and flexible storage platform for big data, Amsterdam UMC is 
able to optimize data performance and costs through capacity planning, storage utilization, 
and data placement based on IBM Spectrum Scale that automatically moves data between 
storage systems without disrupting users or applications.

This guarantees clinicians, researchers, and users have maximum availability for any type of 
data based on self-provisioning with multiple levels of service (gold, silver and bronze) 
depending on how often the data needs to be accessed or used. Today, their archive based 
on IBM Tapes is spanning more than 100 years’ worth of data, protected from disasters and 
GDPR-compliant. 

6.2.4  Business benefits

The following business benefits are described from the case scenario:

� 99% faster data migrations enable IT to focus on value-added development
� 7% increase in backup frequency due to reduced complexity and increased efficiency
� Streamlines governance by migrating the organization to a centralized pool of storage

6.2.5  Solution components

The following list shows the solution components:

� IBM Spectrum Archive Enterprise Edition 
� IBM Spectrum Scale 
� IBM TS4500 Tape Library 

You can read the full story at the following website:

https://www.ibm.com/case-studies/vu-medical-center-research-spectrum-storage

You can also watch the video at the following website:

https://www.youtube.com/watch?v=ISFVscG20xU

6.3  L7 Informatics

Building a high-performance Genomic Cloud to support ground-breaking research.

6.3.1  Customer background

L7 Informatics (https://www.l7informatics.com/) provides software and services that 
enable synchronized solutions for science and health. L7’s novel Enterprise Science Platform 
(ESP) is a scientific process and data management (SPDM) solution that enables life science 
and healthcare companies to connect people, processes, and systems to accelerate 
discoveries and drive precision healthcare. 

“We were able to cut the run time of one standard genome analysis pipeline down from 24 
hours to just over an hour—a time saving of 96 percent.” 

—Chris Mueller, Founder, L7 Informatics 
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6.3.2  Business challenge

To advance our understanding of the human genome, scientists must process vast amounts 
of data. However, many research centers struggle to manage the immense volume of data 
that they generate, so that they can put it to its best use.

6.3.3  Transformation

L7 teamed up with IBM to build an HPC environment on the cloud, leveraging IBM Spectrum 
technology for flexible, highly scalable data storage and user-friendly workload management.

6.3.4  Business benefits

The following business benefits are described from the case scenario:

� 96% reduction in the run time of a standard genome analysis pipeline
� 1/3 the price of using commodity solutions to perform the same work at scale 
� 2 weeks from conceptual design to fully-functional IBM HPC environment on the cloud

6.3.5  Solution components

The following list shows the solution components:

� IBM Cloud
� IBM Spectrum LSF
� IBM Spectrum Scale

You can read the full story at the following website: 

https://www.ibm.com/case-studies/l7-informatics-systems-spectrum-hpc

You can also watch the video at the following website: 

https://www.youtube.com/watch?time_continue=46&v=lD8CiPQYRTI

6.4  University of Birmingham

Driving innovative research forward by taking control of data.

6.4.1  Customer background

Established by Queen Victoria in 1900, the University of Birmingham 
((https://www.birmingham.ac.uk/index.aspx) is one of the largest universities in the UK, 
serving approximately 34,000 undergraduate and graduate students.

“Breakthroughs are happening all the time at the university. Underpinning all of this 
pioneering innovation, IBM Spectrum Storage solutions make sure that the data is there, 
whenever our researchers need it.”

—Simon Thompson, Research Computing Infrastructure Architect, University of 
Birmingham
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The university’s Computer Centre is the centerpiece of the Birmingham Environment for 
Academic Research (BEAR), a collection of IT resources available without cost to the 
University of Birmingham community and qualified external researchers.

6.4.2  Business challenge 

To maintain its reputation as a premier research institution, the University of Birmingham must 
ensure that data is always available to a growing number of users running increasingly 
complex simulations.

6.4.3  Transformation 

The university deployed IBM Spectrum Scale and IBM Spectrum Protect, increasing 
transparency around data’s location and who accesses it, and increasing its mobility within a 
diverse IT environment.

6.4.4  Business benefits 

The following features represent a few of the business benefits gained from the implemented 
solution:

� Supports compliance with data protection regulations at low cost and without disruption
� Up to an estimated 2 FTEs savings due to enhanced operational efficiency 
� 5000 researchers supported by infrastructure that helps them find solutions to key issues 

faster

6.4.5  Solution components

The following list shows the solution components:

� IBM Spectrum Scale Data Management Edition
� IBM Spectrum Protect
� IBM Power Systems AC922
� IBM PowerAI Enterprise

You can read the full story at the following website: 

https://www.ibm.com/case-studies/university-of-birmingham-systems-software-spectru
m-scale

6.5  Thomas Jefferson University

Deepening the understanding of disease enables radically new approaches to diagnosis and 
treatment.

“When you let data lead the way, you can entertain bolder journeys that are not limited by 
what is already known in the literature. High-performance computing is the catalyst that 
makes such scientific explorations possible.”

— Isidore Rigoutsos, PhD, Founding Director of the Computational Medicine Center, 
Thomas Jefferson University
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6.5.1  Customer background

Jefferson (Philadelphia University + Thomas Jefferson University: 
https://www.jefferson.edu/) is a distinctive, comprehensive national university setting a 
new standard for 21st-century professional education. It has 7,800 students, more than 4,000 
faculty members, and offers approximately 160 undergraduate and graduate programs on 
multiple campuses. Its unique Nexus Learning model focuses on collaborative, 
inter-professional, and trans-disciplinary approaches to learning supported by design and 
systems thinking, innovation, entrepreneurship, empathy, and the modes of thought central to 
the liberal arts and scientific inquiry.  

6.5.2  Business challenge

What causes some people to develop diseases and not others? The attempt to find an 
answer is driving ground-breaking research, and leading pioneers to challenge traditional 
approaches to treatment.

6.5.3  Transformation

The Computational Medicine Center at Jefferson is breaking new ground in the 
understanding of disease by analyzing huge amounts of biological data with the help of 
high-performance computing.

6.5.4  Business benefits

The following are a few of the business benefits from the implemented solution:

� Push the boundaries of knowledge, anticipating new breakthroughs in healthcare
� Support the development of diagnostics and therapies that boost positive outcomes
� Remove barriers to scientific exploration through data-driven research

6.5.5  Solution components

The following list shows the solution components:

� IBM Spectrum Scale 
� IBM Spectrum Protect 
� IBM Storwize® V5030
� IBM TS3310 Tape Library 

You can read the full story at the following website: 

https://www.ibm.com/case-studies/jefferson

You can also read the story with the following link to the e-book:

https://www.ibm.com/downloads/cas/ZBXXNGP2

You can also watch the videos at the following website:

https://bit.ly/2wBh4TN
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6.6  Biotechnology and Biomedicine Center of the Czech 
Academy of Sciences and Charles University: BIOCEV

Building research infrastructure with performance, efficiency, and reliability in its DNA. Ł

6.6.1  Customer background

Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in 
Vestec (BIOCEV: https://www.biocev.eu/en) was founded as a joint initiative from the 
Academy of Sciences of the Czech Republic and two faculties at Charles University in 
Prague. The project’s goal is to establish a European center of excellence for biomedicine 
and biotechnology, with the following aims: detailed study of cellular mechanisms at the 
molecular level, the research and development of novel therapeutic strategies, early 
diagnostics, biologically active agents including chemotherapeutic, protein engineering, and 
other technologies.

6.6.2  Business challenge

Scientific research does not end after experiment results are achieved. Instead, the outcomes 
must be evaluated and verified, making data storage an essential component of successful 
innovation. To achieve its goal of becoming a European center of excellence for biomedicine 
and biotechnology, BIOCEV had to help scientists store huge amounts of research data.

6.6.3  Transformation

With a software-defined storage solution from IBM, BIOCEV gained the high-performance, 
efficient, and reliable platform needed to support scientific breakthroughs, offering scientists 
fast, reliable storage and access to data. The automated storage management contributes to 
low TCO.

6.6.4  Business benefits

The following are a few of the business benefits from the implemented solution:

� Facilitates research by offering scientists fast, reliable storage and access to data
� Enables high efficiency through automated storage management
� Elevates the organization’s reputation by enabling non-stop services

6.6.5  Solution components

The following list shows the solution components:

� IBM Spectrum Scale 
� IBM Spectrum Protect 

“As scientists introduce the latest generation of appliances and lab equipment, the data 
generated by their research activities surges, and the IBM platform ensures we can cope 
with even the highest demand.”

—Michal Sedláček, IT Architect, BIOCEV 
Chapter 6. Case studies 61

https://www.biocev.eu/en


� IBM Storwize V7000 Gen2 
� IBM TS3500 Tape Library 

You can read the full story at the following website: 

https://www.ibm.com/case-studies/BIOCEV

6.7  Washington University St. Louis and Vanderbilt University

Advancing medical imaging research with deep learning.

6.7.1  Customer background

Washington University School of Medicine (https://medicine.wustl.edu/research/) in St. 
Louis is committed to advancing human health throughout the world, and has an outstanding 
history of biomedical research in an environment that cultivates the best minds in science and 
medicine. To advance medical imaging with AI, they are collaborating with the Vanderbilt 
Institute of Imaging Science (https://vuiis.vumc.org/), which is a trans-institutional 
initiative within Vanderbilt University serving physicians, scientists, students, and corporate 
affiliates.

6.7.2  Business challenge

Recent gains in computing power have made it possible to capture more detailed medical 
images, but making sense of the growing volumes of data is a challenge. Applying AI 
capabilities, and in particular, deep learning, can hold the potential to overcome these 
obstacles and fill in the gaps in incomplete MRI brain scans.

6.7.3  Transformation

With deep learning supported by IBM software-defined infrastructure and high-performance 
computing solutions, researchers are analyzing brain scans to identify brain tumors faster and 
more accurately, helping physicians improve patient care. The enhancement of MRI scan 
analysis enables physicians to effectively use large amounts of generated data, while keeping 
scan times short.

6.7.4  Business benefits

The following features represent a few of the business benefits gained from the implemented 
solution:

� 20x faster training of deep learning models than traditional PC environments
� Increased speed and accuracy of diagnosis, enhancing treatments and patient outcomes
� Lower barriers to deep learning for physicians, addressing the big data skills gap

“IBM did an excellent job to form a very skilled team to support us in a very timely manner.” 

—Dr. Yong Wang, PhD, Assistant Professor of Gynecology and Obstetrics, Radiology, and 
Biomedical Engineering, Washington University St. Louis
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6.7.5  Solution components

The following list shows the solution components:

� IBM Spectrum Conductor Deep Learning Impact 
� IBM POWER8

For additional information about the solution implemented, and feedback about it, see the 
following website:

https://ibm.co/2PsVgFJ

You can read the full story at the following website: 

https://ibm.co/2EMbz8e

You can also watch the informative videos at the following websites: 

https://bit.ly/2RAaqco
https://bit.ly/2COO1zX
Chapter 6. Case studies 63

https://ibm.co/2PsVgFJ
https://bit.ly/2RAaqco
https://ibm.co/2EMbz8e
https://bit.ly/2COO1zX


64 IBM Reference Architecture for High Performance Data and AI in Healthcare and Life Sciences



Appendix A. Profiling GATK

This appendix provides details about the profiling of the Genome Analysis Toolkit (GATK) 
workflow, which is described in 5.1, “The Broad Institute Genome Analysis Toolkit (GATK)” on 
page 44.

Figure A-1 shows step one of the Application Workflow, Mapping to reference genome using 
BWA MEM.

Figure A-1   Application Workflow, Mapping to reference genome using BWA MEM

A

Note: The product release levels indicated in this appendix were the ones used in the lab 
environment for this paper.

IBM Systems

Application Workflow  

Tool BWA

Version 0.7.15-0 used for profiling

Source https://biobuilds.org/tools-in-
biobuilds/biobuilds-2016-11/

|

Mapping to reference genome using BWA MEM

Sort SAM and mark duplicate using Picard or sam2bam

Recalibrate bases quality scores with GATK BQSR
and PrintReads

Call variants with GATK HaploytypeCaller
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Figure A-2 shows Application Profiling - BWA MEM.

Figure A-2   Application Profiling - BWA MEM

Figure A-3 shows step two of the Application Workflow, Sort SAM and mark duplicate using 
Picard or sam2bam.

Figure A-3   Application Workflow, Sort SAM and mark duplicate using Picard or sam2bam

IBM Systems

Application Profiling – BWA MEM

� Is  CPU intensive (%user consuming close to 100%). 
Faster CPU can improve the overall runtime (Number of 
threads launched = 160 <=== ncpu=20; ${bwa_dir}/bwa
mem -t $(( ${ncpu} * 8 )).

� Not memory intensive.
� The I/O pattern: a pattern of writes followed by reads. 

Average bandwidth for write and read is within around 
200 MB/s. Write is sequential I/O 
(WritebehindWorkerThread) and Read is sequential I/O 
(PrefetchWorkerThreads). The fs block size is 16 MiB
and we see "dump iohist" nSec is 32768 sectors.

Input file format:
.fastq or .fq

Output file format:
.bwa.sam

IBM Systems

Application Workflow

Tool sam2bam

Version 1.2-157 used for profiling

Source https://github.com/OpenPOWER-
HCLS/sam-to-bam

Two modes supported

Storage Mode – Only if 1 TB of memory is not available

Memory Mode – Default 

The POWER8 processor makes use of a large number of on-
and off-chip memory caches to reduce memory latency and 
generate very high bandwidth for memory and system I/O. 

Mapping to reference genome using BWA MEM

Sort SAM and mark duplicate using Picard or sam2bam

Recalibrate bases quality scores with GATK BQSR
and PrintReads

Call variants with GATK HaploytypeCaller
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Figure A-4 shows Application Profiling - Sam2Bam (Storage Mode).

Figure A-4   Application Profiling - Sam2Bam (Storage Mode)

Figure A-5 shows step three of the Application Workflow, Recalibrate bases quality scores 
with GATK BSQR and PrintReads.

Figure A-5   Application Workflow, Recalibrate bases quality scores with GATK BSQR and PrintReads

IBM Systems

Application Profiling – Sam2Bam (Storage Mode)

|

� Consumes ~93% CPU in the initial phase (~10 minutes) and 
then around 40% CPU in the later phase. 

� Is memory intensive even in storage mode. The sustained 
memory consumption of sam2bam in storage mode is around 
223 GiB.

� The I/O pattern in the initial phase (~5 minutes) was write I/O. 
In the later phase it was predominantly read I/O. 

� The  gpfs_fis_bytes_read (~ 36 GB/s)  is significantly higher 
compared to gpfs_fs_bytes_read (~300 MB/s). The average 
read bandwidth of this workload is ~300 MB/s. The sustained 
I/O capabilities from this node is ~12 GB/s. The high 
gpfs_fis_bytes_read indicates sam2bam read I/O benefitting 
from pagepool cache hits (~16 GiB pagepool). The application 
read I/O is random access in units of 512 KiB.

Input file format:
.bwa.sam

Output file format:
.md.bam

IBM Systems

Application workflow 

Tool GATK

Version 3.7-0 used for profiling

Source* https://software.broadinstitute.org/gatk/download

* GATK archive versions are located at: https://software.broadinstitute.org/gatk/download/archive

Mapping to reference genome using BWA MEM

Sort SAM and mark duplicate using Picard or sam2bam

Recalibrate bases quality scores with GATK BQSR
and PrintReads

Call variants with GATK HaploytypeCaller
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Figure A-6 shows Application Profiling - GATK BQSR, and Figure A-7 shows GATK 
PrintRead.

Figure A-6   Application Profiling - GATK BQR

Figure A-7   Application Profiling - GATK PrintRead

IBM Systems

Application Profiling – GATK BQSR

� Consumes around 70% of CPU.
� GATK BaseRecalibrator is memory intensive. There are 

total of 18 x Java Threads. The memory for each Java 
thread was reduced to 10G (-Xmn10g -Xms10g -
Xmx10g), so that aggregate memory consumption of 
GATK-BaseRecalibration Java component was 180G to 
fit within the node's memory capability.

� I/O pattern, this workload is predominantly read 
intensive. Average bandwidth for write and read is 
within 100 MB/s. Most of the read I/O size is in unit of 
file-system block-size (16 MiB) with mix of sequential 
and random I/O.

Input file format:
.md.bam

Output file format:
multiple 
.recal_reads<number>.table

IBM Systems

Application Profiling – GATK PrintRead

� Consumes around 70% of CPU. 
� Is memory intensive. There are total of 18 x Java 

Threads. The memory for each Java thread was 
reduced to 10G (-Xmn10g -Xms10g -Xmx10g), so that 
aggregate memory consumption of GATK-PrintRead
Java component was 180G to fit within the node's 
memory capability.

� I/O pattern, this workload has mix of read and write. 
Average bandwidth for write  is within 150 MB/s. 
Average bandwidth for read is within 75 MB/s. The write 
I/O size is varied but mostly above 512 KiB  with mix of 
sequential and random I/O. The read I/O size is mostly 
sequential I/O in units of FS block-size (16 MiB). 

Input file format:
multiple 
.recal_reads<number>.table

Output file format:
multiple 
.recal_reads<number>.bam
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Figure A-8 shows step four of the Application Workflow, Call variants with GATK 
HaplotypeCaller.

Figure A-8   Application Workflow, Call variants with GATK HaplotypeCaller

Figure A-9 shows Application Profiling - GATK HaplotypeCaller, and Figure A-10 on page 70 
shows GATK MergeVCF.

Figure A-9   Application Profiling - GATK HaplotypeCaller

IBM Systems

Application Workflow 

Tool GATK

Version 3.7-0 used for profiling 

Source* https://software.broadinstitute.org/gatk/download

* GATK archive versions are located at: https://software.broadinstitute.org/gatk/download/archive

Mapping to reference genome using BWA MEM

Sort SAM and mark duplicate using Picard or sam2bam

Recalibrate bases quality scores with GATK BQSR
and PrintReads

Call variants with GATK HaploytypeCaller

IBM Systems

Application Profiling – GATK HaplotypeCaller

� Consumes around 40% of CPU. 
� Is not memory intensive.
� In terms of I/O pattern, this workload has mix of read 

and write. Average bandwidth for write  is within 100 
MB/s. Average bandwidth for read is within 100 MB/s. 
The write I/O size is varied   with mix of sequential and 
random I/O. The read I/O size is mostly sequential I/O 
in units of FS block-size (16 MiB).

Input file format:
multiple 
.recal_reads<number>.bam

Output file format:
Multiple  
.raw_variants<number>.vcf
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Figure A-10   Application Profiling - GATK MergeVCF

Additional information can be read in the following document:

� A guide to GATK4 best practice pipeline performance and optimization on the IBM 
OpenPOWER system

https://www.ibm.com/downloads/cas/ZJQD0QAL

IBM Systems

Application Profiling – GATK MergeVCF

� Not CPU intensive.
� Is not memory intensive.
� I/O pattern, this workload has mix of read and write. 

Average bandwidth for write  is within 1.5 GB/s. 
Average bandwidth for read is within 2 GB/s. The read 
I/O size is mostly sequential I/O in units of FS block-
size (16 MiB). The write I/O size is mostly sequential I/O 
in units of FS block-size (16 MiB).

Input file format:
multiple
.raw_variants<number>.vcf

Output file format:
Single
.raw_variants.vcf file
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Related publications

The publications that are listed in this section are considered suitable for a more detailed 
discussion of the topics that are covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this 
document. Some publications referenced in this list might be available in softcopy only. 

� IBM Power System AC922 Introduction and Technical Overview, REDP-5472

� IBM Platform Computing Cloud Services, REDP-5214

� IBM Platform Computing Solutions for High Performance and Technical Computing 
Workloads, SG24-8264

� IBM Reference Architecture for Genomics, Power Systems Edition, SG24-8279

� IBM Reference Architecture for Genomics: Speed, Scale, Smarts, REDP-5210

� IBM Spectrum Computing Solutions, SG24-8373

� IBM Spectrum Scale Best Practices for Genomics Medicine Workloads, REDP-5479

� IBM Spectrum Scale (formerly GPFS), SG24-8254

� Implementing IBM FlashSystem 900, SG24-8271

� Implementing IBM Spectrum Scale, REDP-5254

You can search for, view, download or order these documents and other Redbooks, 
Redpapers, web docs, drafts, and more materials, at the following website: 

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� A guide to GATK4 best practice pipeline performance and optimization on the IBM 
OpenPOWER system

https://www.ibm.com/downloads/cas/ZJQD0QAL

� IBM Aspera

https://www.ibm.com/software/info/aspera/

� IBM Cloud

http://www.softlayer.com/

� IBM Cloud Object Storage

https://www.ibm.com/cloud-computing/products/storage/object-storage/cloud/

� IBM Power Systems

http://www.ibm.com/systems/power/
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� IBM Spectrum Computing

http://www.ibm.com/systems/spectrum-computing/

� IBM Spectrum Scale

http://www.ibm.com/systems/storage/spectrum/scale/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
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