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Abstract

As personalized medicine becomes more integrated into healthcare, the rate at which human 

genomes are being sequenced is rising quickly together with a concomitant acceleration in 

compute and storage requirements. To achieve the most effective solution for genomic workloads 

without re-architecting the industry-standard software, we performed a rigorous analysis of usage 

statistics, benchmarks and available technologies to design a system for maximum throughput. We 

share our experiences designing a system optimized for the “Genome Analysis ToolKit (GATK) 

Best Practices” whole genome DNA and RNA pipeline based on an evaluation of compute, 

workload and I/O characteristics. The characteristics of genomic-based workloads are vastly 

different from those of traditional HPC workloads, requiring different configurations of the 

scheduler and the I/O subsystem to achieve reliability, performance and scalability. By 

understanding how our researchers and clinicians work, we were able to employ techniques not 

only to speed up their workflow yielding improved and repeatable performance, but also to make 

more efficient use of storage and compute resources.
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1. INTRODUCTION

In May 2012, we deployed Minerva, Mount Sinai’s first supercomputer. It was swiftly 

accepted as an essential and integral part of the scientific discovery process and used by a 

variety of disciplines. Researchers immediately exploited Minerva to devise more complex 

experiments and higher fidelity simulations to expand and accelerate progress on their 

scientific investigations. The usage has directly translated into new understanding of, and 

therapies for, a wide spectrum of disease categories including autism, insulin resistance in 

diabetics, schizophrenia and related behavioral disorders, cardiac care, the origins of drug 

addiction and depression, and cancer progression [1–8].

In its first year of operation, Minerva served 339 total users (277 from Sinai and 62 from 

external institutions) across 161 projects, and 11 departments. Eight million jobs consumed 

over 40 million core hours. Minerva had a 99% uptime rate and was utilized 84% of the time 

with frequent extended periods over 90%. The usage was split with two-thirds of the total 

core hours used for genomic sequencing, and one third for molecular modeling simulations.

Although we collected user requirements before designing the system, the actual usage of 

the genomics pipeline was very different from what we anticipated: massive numbers of 

extremely small files and extremely short running jobs on single cores. This caused both our 

parallel file system and scheduler to exhibit unexpected behavior and cause the system to be 

less reliable from a usability perspective, and unreliable from a consistent I/O performance 

perspective. Through the creation of a new monitoring tool, benchmarking, and the advent of 

new technology, we designed and deployed a new system scalable and reliable for our 

genomics workload, optimized for high throughput and consistent I/O performance. Today, 

Minerva is comprised of 12,864 cores, 50 terabytes of RAM, 160 terabytes of flash memory, 

and 11 petabytes of storage capacity. There are over 1,000 user accounts, including over 200 

external users. The system reliably handles the necessary workload of 500,000 jobs in the 

queue, providing consistent high I/O performance for hundreds of millions of tiny files, and 

computes nearly five times faster on the genomic pipeline workflow.

2. GENOMICS PIPELINE WORKFLOW

The Broad Institute’s “GATK Best Practices” pipelines provide step-by-step 

recommendations of the most widely used DNAseq and RNAseq software. While the name 

of workflow itself includes the words “Best Practices”, we are not asserting that it is a best 

practice, however, it is the “industry standard” with over 20,000 users [9–12, 14]. This paper 

is focused on sharing our experiences architecting a system to optimally run this workflow 

and not on the quality of this workflow from a bioinformatics perspective. There are three 

major steps in the variant discovery pipeline: data pre-processing, variant discovery and 

evaluation [15]. Within each of these steps, the specific software tools used may vary 

depending on what is necessary for a particular analysis. For instance, a specific variant 

caller might be preferred depending on the degree of specificity needed for your specific 

dataset [16,17]. The “GATK Best Practices” pipeline recommendations are developed by the 

GATK team in collaboration with research groups and are constantly updated as new and 

improved methodology is developed. The paper is based on the “GATK Best Practices” 
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pipeline that was deployed at Mount Sinai. This so-called “Best Practices” pipeline is widely 

regarded in the community to produce the best analysis results possible from NGS high-

throughput sequencing data for the most common use cases and data types. Other options for 

whole pipeline analysis include accelerated appliances for specific mutations such as 

Genalice and alternative approaches such as Johns Hopkins University’s and Beijing 

Genomics Institute’s SOAPdenovo [18–21]. Here, we extensively test the performance of 

Mount Sinai’s implementation of the Broad Institute’s “GATK Best Practices” pipeline for 

variant discovery in high throughput sequenced DNA data [13], and we describe the 

performance and tuning of our supercomputer resource, Minerva.

The genomics workflow for both RNA and DNA analysis typically proceeds as a three-step 

process. First, the primary analysis involves concatenating and de-multiplexing the data that 

comes from the genomic sequencers into Next Generation Sequencer (NGS) FASTQ files. 

This step is computationally trivial, however, the storage requirements are significant: a 

typical DNA exome sequence generates 20 to 40 million 100 nucleotide reads per subject, 

which, including quality scores, uses 4 to 8 gigabytes. Typical genomic studies involve the 

exomes of tens to thousands of subjects, bringing the total storage requirements of a single 

study to terabytes [23–26]. Secondary analysis is the process of sequence alignment to a 

reference genome and variant calling. This step is the most computationally intense portion 

of the genomics workflow for both RNA and DNA. Execution of a typical whole genome 

pipeline to process one sample of RNA or DNA takes 1,000 jobs of varying duration and a 

total time to solution of approximately one week after scheduling and dependencies are 

taken into account.

The Mount Sinai Genomics Core Facility (GCF) is a Clinical Laboratory Improvement 

Amendments (CLIA) certified laboratory which enables Mount Sinai investigators to carry 

out basic and translational genomics research. It helps investigators and clinicians analyze 

samples, identify genetic variants contributing to disease risk, and reveal complex 

mechanisms involved in human disease. Refer to Figure 1 for an overview of the workflow. 

Its capabilities include: (1) sequencing with the Illumina HiSeq 2500 and MiSeq, (2) single 

molecule sequencing with the Pacific Biosciences RS II, (3) Ion Proton for development of 

whole-exome and whole-genome sequencing using Life Technologies sequencing chemistry 

for rapid-turnaround NGS sequencing, (4) Ion Personal Genome Machine for targeted 

research and clinical assays with high throughput and intermediate length reads with rapid 

turnaround time, (5) next-generation sequencing library preparation from RNA and DNA, 

(6) Sanger sequencing with capillary electrophoresis, (7) genotyping, gene expression 

profiling and epigenetics using the high-throughput Illumina BeadArray platform, and (8) 

real-time polymerase chain reaction (PCR) using the Applied Biosystems 7900HT. Mount 

Sinai currently has nine Illumina sequencers each running several times per week. 

Combining with other sequencers, the GCF generates 6 terabytes of raw data per week. 

After analysis and post processing, and including the raw data, the data footprint is 20 

terabytes per week.

The application workload is be grouped into four categories: (1) primary analysis of samples 

processed in the genomics core sequencing facility, (2) secondary analysis (primarily 

genome alignment and variant calling) for these samples performed by the genomics 
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sequencing core or other groups at Mount Sinai, (3) tertiary analysis (annotation and variant 

classification) from these samples performed by the genomics sequencing core, and (4) 

biomedical interpretation with many different styles of statistical and network analysis. All 

of the biomedical interpretation analyses are performed with the aim of identifying genes 

and networks of genes/proteins that associate with human disease and/or disrupted animal 

models. While steps 1–3 are usually very predictable in terms of their computational and 

storage requirements, the costs of step 4, biomedical interpretation, can vary and grow 

substantially. These steps can involve simulations and network analyses of high 

computational complexity.

A schematic of the DNA pipeline can be found in Figure 2. These diagrams show the sets of 

tools used at each stage in the analysis pipeline (sequencing, secondary, and tertiary). In 

each case, primary sequencing involves the transfer and pre-processing of raw data collected 

from our Illumina and PacBio sequencers. These raw data are converted to the FASTQ 

format by either proprietary, vendor supplied programs or custom scripts. These converted 

data become the primary analysis data and inputs to the secondary stage of the pipelines. 

The secondary stage is the process of creating the alignment or BAM files, iteratively 

improving the quality of those BAM files, and calling variants. This is the most 

computationally intense step of both the DNA (and RNA) pipelines. This analysis step 

involves the execution of many programs, the collection of which comprises a highly 

heterogeneous compute pipeline. At various stages during this pipeline, each of I/O, 

compute, or memory bandwidth is the dominant limiting factor. For secondary analysis, 

however, the procedure is generally fixed for all samples that come off the sequencers. In 

contrast, further downstream analysis involves computational algorithms that directly answer 

the scientific questions at hand and are varied in their computational requirements. For 

example, one such question might be: “What are the rare variations in a genome sequence 

which correlate to patients with schizophrenia or autism?” Our researchers have developed 

their own algorithms for these questions [1–2, 23].

3. INITIAL MINERVA DESIGN

Minerva’s components are connected using a single tier of Infiniband in a fat-tree topology. 

Although genomic workflows do not typically employ any distributed parallelism, this 

network is used for high performance I/O and for MPI in molecular dynamics simulations.

Most of the genomics workflow does not require double precision floating point calculation, 

so we opted to purchase the largest number of cores possible, knowing that the calculations 

that need double precision, e.g. molecular dynamics (MD) simulations, could reserve extra 

cores on the whole nodes. Lacking historical workflow information from our constituency, 

but knowing that many of the jobs would need single cores, we operated the cluster in a 

shared node configuration, utilizing cpusets to enforce core assignment to jobs. The initial 

scheduler, TORQUE 2.5.11, had built-in support for assigning cpusets to tasks within a job. 

The TORQUE implementation at the time of deployment however, was unable to enforce 

memory limits per job. Instead, we enforced this through Moab’s resource limit policies. 

The scheduling initially utilized TORQUE 2.5.11 and Moab 6.1.5. The resource manager 

and workload manager were subsequently upgraded to TORQUE 4.1.5 followed by 
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TORQUE 4.2.4 and Moab 7.2.2. The original queue configuration was based on job size for 

long running multi-core SMP and MPI jobs. A concession was made for short jobs and 

single core jobs by instituting express and serial queues.

The storage subsystem was composed of two sets of disks: (1) a Data Direct Networks 

(DDN) SFA10K controller couplet with 3 terabyte 7,200 RPM NL-SAS drives grouped in 

60 LUNs of 8+2p RAID6 totaling 1.8 petabytes of raw storage and used for file system data, 

and (2) a DotHill/DDN EF3015 controller pair serving 450 gigabyte 15,000 RPM 6G SAS 

drives grouped in 6 LUNs of RAID1 used for the file system metadata. We separated the 

underlying metadata storage from the data storage to provide better performance for the 

expected large number of small files [27]. The system had four storage servers with two of 

them also attached to the DDN EF3015 controller with two 8 gigabit fibre channel paths per 

server, providing several data paths for both load balancing and redundancy. We selected 

IBM’s General Parallel File System (GPFS) 3.4 over Lustre because it has a number of 

advantages that are specifically useful for this workload such as parallel metadata servers, 

tiered storage, and subblock allocation [27]. GPFS has been renamed to “Spectrum Scale” 

but we will refer to it as GPFS throughout this paper.

4. USAGE AND ANALYSIS

To understand how to optimize our configuration for our actual computational and data 

needs, we performed a rigorous data collection and an analysis of our workload. We also had 

anecdotal experience that informed our analysis. After the first year, we collected the usage 

statistics shown in Table 1. We were surprised by the sheer number of files, the tiny size of 

the vast majority of them, and the short job run time. We also experienced unexpected issues 

with scheduling and the file system due to unpredicted use cases. This workload is vastly 

different than a typical HPC workload where there may be only a couple of jobs using all of 

the system’s cores and writing to only a few files [49–53].

The GATK pipelines typically involve the use of many different types of parallelism. In the 

most compute intensive steps, such as the alignment phase implemented using BWA-MEM 

(and benchmarked in detail below), shared-memory thread-based parallelism is implemented 

and achieves nearly linear scaling well beyond 16 cores for all of our benchmarked systems. 

In most other steps of the pipeline, parallelism is implemented with a scatter-gather 

methodology, where the full problem is broken into many embarrassingly parallel serial jobs 

which are submitted all at once to the cluster. The next step of the pipeline is then executed 

only when all scatter-gather jobs for the current step are complete. A control process running 

on a head node is responsible for all job submission and monitoring. Communication 

between jobs is handled exclusively on disk, in many cases using zero length or very short 

files to indicate the status of a given scatter-gather job. The “GATK Best Practices” Queue 

(GATK-Queue) control process is responsible for managing failure of individual jobs. If one 

scatter-gather job fails, for example, during the variant calling step, the control process is 

signaled and resubmits the job immediately before the next stage in the pipeline can 

proceed. This mode of execution is very similar to MapReduce applications such as Hadoop, 

in that it reruns failed tasks, and avoids the need for a system-level checkpoint restart 

mechanism such as Berkeley Lab Checkpoint/Restart (BLCR). If the pipeline fails some 
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number of times, the control process will terminate the pipeline, while leaving it in a re-

startable state. An example of this type of parallelism, the most common in the “GATK Best 

Practices” pipeline, is found in the HaplotypeCaller. One user, who executed analysis of 100 

exomes simultaneously had over 1.2 million files open at one time with 1,400 jobs on 1,400 

cores during the HaplotypeCaller step. Portions of the “GATK Best Practices” pipeline such 

as the HaplotypeCaller can be run in embarrassingly parallel fashion via the gather 

functionality of GATK-Queue. Since the initial Minerva and most standard HPC clusters are 

not designed for this use case, we had reliability and performance issues with both the 

scheduler and the file system.

It quickly became evident that the workflow on Minerva was predominantly single core, 

short jobs. Our statistics for 2013 show that 99% of jobs used only one node and took 77% 

of the utilized core hours. Furthermore, 62% of the jobs used only 1 core and took 17% of 

the utilized core hours. 67% of jobs completed in less than 24 hours and represented only 

2% of all core hours used.

When analyzing the usage we observed on Minerva, it is tempting to conclude that an HPC-

style resource is simply not a good fit for the disk-intensive and data-parallel jobs inherent in 

the “GATK Best Practices” pipeline. In fact, many groups have and are currently working on 

implementing certain components of the DNAseq pipeline on alternative architectures, such 

as Hadoop-style clusters [9,28,29]. However, these implementations have not found success 

in production use for many reasons, and the GATK toolkit available from the Broad Institute 

remains an HPC-oriented codebase. Perhaps most importantly, while the DNAseq pipeline is 

in some portions data-parallel, it remains very compute-intensive during both shared-

memory-parallel portions (e.g., alignment) and during scatter-gather parallel portions (e.g., 

the HaplotypeCaller, where HPC-style SIMD optimization, implemented in C intrinsics by 

Intel and introduced in GATK version 3.1, have significant improved the overall 

performance of the pipeline). Hadoop-style implementations of these tools have been 

attempted, though they are in their infancy, have not been adopted by the community at 

large, and have relatively unknown result quality. Exciting development in this area is 

forthcoming, though it is an area of current research and tools have not been broadly 

integrated into an overall pipeline [28, 43, 44].

4.1 Impact on the Scheduler

Each instance of the genomic pipeline workflow submits 10–20,000 short jobs (run time is 

less than 10 minutes per job) at a time. The GATK-Queue control process manages each 

workflow by querying the queue for job status constantly to determine if the next batch of 

jobs should be submitted. Refer to Figure 3 for the job profile for the variant calling portion 

of the “GATK Best Practices” pipeline. During normal production on Minerva, many users 

run their own pipelines. TORQUE and Moab had difficulty managing the large bolus of jobs 

each user submitted along with the constant querying by the GATK-Queue control process, 

and quickly degraded into an unresponsive state. Often, the scheduling of the jobs took 

longer than the amount of the time it took for the jobs to actually run. Users with longer-

running molecular dynamics simulations became less productive due to inaccurate job start 

times caused by genomics jobs submitted with the maximum wall clock time of six days. 
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Genomics users submitted jobs with maximum wall clock times to compensate for the 

highly variable run-times of their jobs due to the fluctuations in the I/O performance. 67% of 

jobs submitted with six day long wall clock time completed in less than 24 hours. 

Employing a bit of social engineering, we configured high priority queues with 24 hours 

maximum wall clock time to encourage more realistic job runtime estimations through faster 

turnaround time. We implemented severe limits on the number of jobs per user in the 

queues, use batched Moab scheduling, and restrict the number of jobs to be scheduled in 

scheduling cycle to achieve scheduler stability. To ameliorate the load imposed by the 

GATK-Queue control processes, we used a command wrapper to return pre-cached qstat 

information.

TORQUE 2.5.11 core dumped at least once a month, which led us to set a cron job to restart 

TORQUE and Moab automatically. For ten hours per month on average, TORQUE would 

not start new jobs, though jobs already running were not affected. New jobs would not start 

unless the job control and log files were manually removed. An upgrade to TORQUE 4.1.5 

introduced more instability due to bugs with job arrays, so we disabled this capability in 

TORQUE. This version also core dumped on a daily basis and we were not able to schedule 

jobs for 30 hours per month on average. The situation improved in TORQUE 4.2, but it still 

was not reliable. With custom patches from Adaptive, we were able to run job arrays and 

increase the number of jobs in the queues to 45,000 with TORQUE 4.2.4. Although this was 

helpful, we still continued to limit the number of jobs each user could submit to control the 

overall number of jobs in the queue to prevent further scheduler instability.

4.2 Impact on the File System

As we discovered, genomic analyses created an inordinate number of tiny files. Refer to 

Table 2 for the distribution of files from the genomics-based workload on Minerva in August 

2013. A typical I/O workflow for one genome created a directory with 0.5–1.2 million files 

and 10,000 folders, although many files are removed after the job completes. In normal 

production, thousands of jobs randomly accessed many tiny files less than 1 kilobyte in size. 

Each job created directory trees with inefficient scripting methods that added to the load on 

the metadata server (for instance, running “ls –l” in a directory with 10,000 files in a “for” 

loop). This is vastly different than a typical HPC workload where a few large files would be 

accessed [49–53]. This created file system and compute performance challenges for several 

reasons: (1) the file system cannot take advantage of speed from parallel striped data LUNs 

as the tiny files do not span more than one file system subblock, (2) storage space is wasted 

because files are significantly smaller than our minimum allocable block of 32 kilobytes, (3) 

job runtime and interactive command line directory listings are slow due to an overloaded 

metadata server that is looking up information on tens of thousands of files for each job 

(multiplied by 10s of these kinds of jobs on the system at any one time), and (4) high latency 

responses from a large number of recursive directories force the metadata server to lookup 

chained inodes.

In a typical month during 2013, there were approximately 160 million files less than 20 

kilobytes in size consuming 300 gigabytes, and 30 million files greater than 20 kilobytes in 

size consuming 1,000 terabytes. For the files smaller than 20 kilobytes, about 100 million 
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files were of zero length. 50% of the files for the genomics workload were 29 bytes or 

smaller and 80% of the files were smaller than 10 kilobytes. Files in the larger category were 

unremarkably distributed. The largest file was 1.3 terabytes. 93 million out of 200 million 

files were less than 1 kilobyte and consumed 0.007% of the total disk space in aggregate. All 

files less than 1 megabyte consumed only 1 terabyte in aggregate. Nine million out of 18 

million directories only contained one file. Upwards of 5,500 directories had greater than 

10,000 files in them, with several exceeding 500,000 files. Although the GATK-Queue 

control process has an option to clean up intermediate files automatically when the pipeline 

has completed successfully, it appeared that not all files were removed.

Our researchers exhausted the initial 1.5 petabyte (usable) storage capacity by mid-2013. 

GPFS began to perform poorly when more than 80% full because the distribution of files 

became highly fragmented. We limited the maximum footprint of files stored on the machine 

to be less than 1.2 petabytes to guarantee reasonable performance. In September 2013, 

genomics users accounted for 707 terabytes of actively used research data on the file system, 

while the remaining 560 terabytes were generated by users in other departments such as 

Structural and Chemical Biology. Although we had regular purging in place, we still had to 

ask users to delete or move their files to archival storage to make room for new runs. 

Obviously this was not the most efficient use of our researchers’ time, and more storage was 

needed urgently.

Although the file system performed adequately during benchmarks and under normal use 

cases, we began to see issues as the load increased. We, along with our users, occasionally 

noticed a slow response when traversing or listing directories in real-time on the command 

line and we experienced variable job run time. Directory operations were especially 

challenging, as they required multiple and/or chained metadata operations to retrieve all 

required information to complete the command. Genomic workloads that performed 

directory listings with on-disk hash tables for looking up references or updating the date/

time on files used as semaphores added to the metadata server load.

4.2.1 New GPFS-storage correlation tool—To find the root cause of our periodic 

slow downs, we needed to have an overall picture of what was happening on each 

component of the I/O subsystem at the same time. In 2013, we found several tools that 

showed detailed information for specific components including a GPFS Ganglia Plugin and 

a GPFS Monitoring Suite by NCAR but nothing that could track events from end-to-end in 

real-time to replay an event step-by-step [30,31]. To understand our system holistically, we 

wrote our own tool to gather metrics from each of the following major components: (1) 

GPFS “waiters,” the list of outstanding I/O requests between nodes, (2) GPFS mmpmon, 

internal file system counters, (3) the DDN SFA 10K storage controller virtual disk statistics, 

and (4) the DDN EF3015 metadata controller load statistics [32–34]. Each of these 

components can be monitored through vendor-provided scripts, but they only output a single 

point-in-time reading at the user’s request. While they can be looped, it is not a good long-

term solution for bottleneck assessment, nor does it allow troubleshooting after the fact. Our 

tool enabled us to capture data in real-time continuously across all of these components and 

allowed us to “play-back” what was occurring on each of these components during a file 

system slow down.
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The back-end architecture of the tool stores and retrieves metrics, and does not display end 

user graphs in any specific way. With this approach, it is easy to import metrics into tools 

such as R or Matlab for further analysis. For the front-end, we deployed a webpage using 

HTML, HighCharts, and JQuery [35]. The webpage is completely client-side and requires 

no rendering from the server side, only a REST API written in PHP. The REST interface 

passes through selected metrics from the database for the user requested time period. We 

implemented start and end parameters to limit the data range so that the browser can easily 

render the dataset and make it easy to read. We chose PHP script and MySQL as the 

backend because it is easy to use, ubiquitous, has many import/export choices with 

unlimited full-resolution storage capability.

Using this tool, we collected over 137 million data points in three months. We examined the 

dashboard and aggregate metrics and found the following themes: (1) regular achievement of 

the maximum possible Input/output Operations Per second (IOPs) on both the metadata and 

data controllers, (2) throttling of the data controller due to high load on the metadata 

controller, and (3) thrashing between high and low load conditions. In addition to user 

workloads, we utilized GPFS’s Integrated Lifecycle Management (ILM) to purge older files, 

which triggered whole file system scans, and compounded the metadata load. Since the ILM 

scans were a good example of a “high load” condition, we selected it as a benchmark. Given 

our findings, we realized we had to design for a much higher metadata IOPs capability 

across the entire metadata disk subsystem and a much lower latency for the metadata 

controller. Latency is especially important because GPFS utilizes indirect on-disk inode 

pointers for directories with large numbers of files [31]. One industry standard method for 

achieving high IOPs is to implement a cache, however, as our metadata workload style was a 

high load of chained random I/O across the entire metadata array, it was likely that a cache 

would only be drained and refilled continuously, and thus not aid performance. With flash 

having the lowest latency of all storage options, we decided to incorporate it into the 

expanded Minerva design. In subsequent tests using ILM scans in the same system 

conditions, flash outperformed SAS by 15 times as shown in Figure 4. We found that our 

genomic workload requires a high volume of random, chained I/O operations, and that flash 

storage significantly increased and provided reliable I/O performance for these metadata-

intensive operations.

5. PROJECTED USAGE

We would be remiss if we didn’t explore future compute and storage usage and incorporate 

it into our new design. We wanted the new system to accommodate expected storage and 

compute growth for the next 3–4 years. The need for dramatic growth in compute and 

storage directly corresponded to the growth of genomics projects, and we combined our 

actual usage from the previous section with projections from our users to determine our 

future needs. Refer to Figures 5 and 6 for our projections. In 2013, the Mount Sinai GCF 

had five Illumina sequencers generating data. By 2015, nine Illumina sequencers were in 

production. By 2019, Mount Sinai expects that number to increase to at least 12, which will 

require the equivalent of an additional 48 million core-hours on our older, AMD-based 

Minerva compute nodes. This will more than double the number of simultaneous samples to 

be processed and analyzed over a five-year period. This is equivalent to approximately 32.9 
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million core hours at 3.5 GHz using a string linear clock frequency comparison, far beyond 

our current capacity in 2013.

Additionally, data from previous analysis cannot simply be discarded. As newer and more 

accurate/efficient techniques are invented, entire cohorts of samples are re-analyzed. The 

cumulative storage requirements for new sequencing projects are expected to approach 6 

petabytes by 2019. With these continuously growing datasets, and increased rate of 

sequencing due to additional projected sequencers and re-analysis of existing data due to 

updated algorithms, we needed to add a long-term archival storage solution to our system. 

For this, we selected IBM’s Tivoli Storage Manager (TSM).

6. WHOLE-PIPELINE BENCHMARKING

In addition to providing a reliable system using the lessons learned from section 4, and 

providing enough capacity for the future as explained in section 5, we also wanted to 

decrease the time to solution by using the fastest components for our workload. By 

increasing the computational speed of the pipeline, we would also be increasing the overall 

throughput, thus enabling more science to be done in the same period of time.

Therefore, we embarked on a series of benchmarks on the “GATK Best Practices” 3.1.1 

whole-genome pipeline in production at Mount Sinai. We initially aimed for a 24-hour 

turnaround for most pipeline runs, and aimed for even faster results as we tuned the system 

and software.

The underlying GATK toolset included alignment by BWA-MEM in a multithreaded 

configuration, and variant calling using the now-standard Haplotype caller including Intel’s 

AVX-extension vectorization where possible. We used a GATK-Queue scatter-gather width 

of 64 in all pipeline benchmarks, and ran BWA alignment at 16 threads on our original 

AMD Opteron processors and 12 threads on our trial 12-core Intel Ivy Bridge Xeon 

processors. Two underlying storage subsystems were also benchmarked: our original DDN 

10K system, and a trial system based on IBM flash storage and IBM GPFS Storage Server 

(GSS). These new trial processor and storage subsystem configurations are described in 

detail below, in section 7.

Figure 7 shows a log plot of CPU-hour consumption for the six major categories of GATK 

pipeline jobs, presented as box plots including median, interquartile range, and outlier 

points. Unsurprisingly, the largest number of CPU-intensive jobs was found in the 

alignment, recalibration and variant calling steps of the pipeline. Both the BWA-MEM and 

Haplotype caller are computationally intensive components of the pipeline in which CPU 

architecture and speed completely determine efficiency and time-to-solution. Our analysis of 

CPU architecture therefore naturally focused on these components of the pipeline.

Figure 8 shows the strong scaling performance of two CPU configurations during BWA-

ALN alignment for our two trial CPU architectures. The performance variability of the 

AMD Opteron chips was immediately apparent. This originated from our desire to 

maximally utilize our very wide, 64-way AMD Opteron nodes. Here, each alignment job 

was given 16 threads in a cgroup (as described in the initial Minerva design above), and 
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other jobs may be scheduled on the remaining cores. In contrast, the 12-core Intel Ivy Bridge 

nodes were scheduled as a whole, limiting this performance variability. We found very early 

on that both scheduling and performance vastly improved as we reduced node core width, so 

that CPU-intensive portions of the genomics pipeline utilized all of a node’s resources 

without wasting cycles. Although the performance improvement for 3.5 GHz Ivy Bridge 

chips is clear in Figure 8, these processors also operated at a 52% higher clock rate. As 

described in the section above on scheduler performance, the vast majority of genomics 

pipeline jobs are single core, short jobs implemented in relatively poor-performing, high-

level languages. In these cases, maximizing clock speed makes intuitive sense, as the codes 

are unable to take advantage of the feature sets present in modern CPU architectures. 

Alignment, however, is perhaps the only traditional-style HPC job in the genomics pipeline, 

consisting of highly optimized C code with excellent scaling performance. For this reason 

we normalized Figure 8 for clock speed, to indicate architectural improvement for BWA 

alignment. This result was fundamental to our choice of next-generation CPU for Minerva. 

Returning to the overall results of Figure 8, we found a maximum alignment time on 12 Ivy 

Bridge cores of 4.33 hours, compared to 10.86 using 16 AMD Opteron cores, with the same 

underlying IBM Flash+GSS file system. Similarly we found maximum job lengths of 37.87 

and 86.07 hours for Intel Ivy Bridge over AMD Opteron Interlagos, respectively, during the 

variant calling procedure. Similar reductions in maximum and median wall time were 

apparent throughout all components of the pipeline. In total, the total performance 

improvement for the whole pipeline was 2.51 times when using small nodes of Intel Ivy 

Bridge over our wide AMD Opteron cores (471 vs. 1,182 hours, respectively).

Further overall performance improvement was observed when considering the underlying 

storage subsystem. Figure 9 shows box plots of CPU efficiency for the six major categories 

of “GATK Best Practice” jobs. Here, efficiency is computed as the total CPU cycles 

consumed by the job (“wired” hours) divided by the total CPU-hours the job was resident on 

the cores (“blocked” hours, or CPU cycles produced during that time). It was clear that 

significant efficiency increases were gained by moving to the flash storage backed by IBM 

GSS. This is discussed further in section 7.

These results strongly suggest that the genomics pipelines were starved of IOPs when 

backed exclusively by spinning disks. While this improvement resulted in only a 5% 

decrease in CPU-time on the new storage subsystem (1,182 vs. 1,247 hours, respectively), it 

yielded an incredible 1.91 times improvement in the overall wall time (1,412 vs. 2,702 

hours, respectively). Combining both our CPU and file system benchmark results, we 

observed a total wall time performance improvement of 4.8 times (562 vs. 2,702 hours, 

respectively). These results directly informed our design of the expanded Minerva, described 

next.

7. EXPANDED MINERVA DESIGN

Our overarching goal was to accelerate scientific discovery by (1) providing a stable and 

reliable platform with repeatable performance, (2) increasing to the maximal affordable size 

of storage to accommodate future growth, (3) improving the computational throughput 

through a tuned architecture, and (4) employing the best new technologies to boost our 
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overall throughput. We selected our new design by reviewing our previous system 

performance in the context of our users’ application performance and projected usage. In 

section 4, we discussed the workflow and requirements for the scheduler and in section 5, 

we explored the projected compute and storage usage along with the results of our 

benchmarking as discussed in section 6. We then architected a system to meet a combination 

of the expected and actual user requirements using a selection of new technologies. We 

expanded Minerva in two phases: first in February 2014 funded by Mount Sinai, and the 

second in February 2015 funded by the NIH to build a Big Omics Data Engine (BODE). In 

the first expansion, we added 2,508 Intel Ivy Bridge compute cores, 160 terabytes of flash 

and 3 petabytes of IBM GSS storage. In the second expansion, we added an additional 2,484 

Intel Haswell compute cores and 5 petabytes of DDN storage. The aggregate configuration 

is displayed in Table 3. The main interconnect for the cluster is Infiniband with both Quad 

Data Rate (QDR) and Fourteen Data Rate (FDR) connections between the nodes depending 

on their age.

7.1 Improved Scheduling

As we designed the expansion in 2013, it was evident to us that the high rates of job ingest 

and job querying made TORQUE a non-contender at that time. Therefore, we evaluated 

Slurm 2.6 and IBM’s Load Sharing Facility (LSF) 9.1. Although Slurm was designed to 

handle the scalability that we needed, it had several key missing features, such as high-speed 

accounting and DRMAA support. LSF had demonstrated the ability to schedule large 

numbers of jobs efficiently and reliably, allowed extensive tuning, and included support for 

all of our required functionality with a comprehensive set of programming APIs, including 

Python LSF wrappers and official DRMAA support. Based on our requirements, we selected 

LSF 9.1.2. We customized the LSF/Gold integration to support accounting for our high job 

load on Minerva. We also changed our queue structure from one that was based on job size 

to one based on self-determined priority. This enabled our users to have control over how 

quickly their jobs run and naturally balanced “urgent” clinical tasks with research projects to 

keep overall utilization high. Jobs submitted to higher priority queues are charged at a rate 

1.5 times higher than allocated projects while low priority scavenger jobs are not charged at 

all. User-based fairshare policies are configured on all of the queues.

The HIGH_THROUGHPUT job template was used for the initial configuration. After the 

initial installation and configuration, we performed the vendor’s recommended tuning for 

large clusters. We then added customizations for cgroup support, increased the timeout for 

connections to the LIM API, Gold accounting integration and BLCR. The 

NEWJOB_REFRESH parameter was turned on to allow users see their job immediately 

after submission, and CONDENSE_PENDING_REASONS was disabled so that users see 

detailed information on why their jobs are pending. There has been no impact on scheduler 

performance from these two parameter changes. We also customized the “esub” and “eexec” 

scripts for LSF/Gold integration. A custom patch for DRMAA/LSF was needed to fix a 

missing job status parameter to charge a user’s Gold account for a job’s run time. Our 

utilization averaged about 84% for 2014, with long periods over 90%. Any LSF stability 

issues have been inconsequential compared with TORQUE.
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We also enforced memory and core usage by creating a cgroup “container” for each job, 

binding cores and memory for that job’s exclusive use. Cgroups provided an interface to 

assign a cgroup to a linux PID and its child processes. LSF utilized this interface to create a 

new cgroup “container” for each job and place the main PID within that container.

LSF scaled for our workload due to (1) the multithreading of the “mbatchd” daemon, (2) the 

ability to utilize the increased number of allocated file descriptors on the master host, (3) the 

use of a local LIM for host status and load information, and (4) the limit on the number of 

job status queries. These features enabled LSF to support a high job submission rate and still 

remain responsive [36]. With LSF in production for over a year, we have not had any LSF-

related crashes, and it has been responsive even with 500,000 jobs in the queue. We removed 

the limits on the number of jobs that each user can submit. LSF is not open source software 

and therefore any troubleshooting involves IBM support. Overall, we found LSF to be a 

highly configurable and stable scheduler capable of handling our demands of workload 

ingestion in large payloads.

7.2 Optimized File System

To improve the performance and reliability of the metadata server and the overall file 

system, we employed flash to hold the metadata and small files due to its low latency and 

high IOPs. Unfortunately flash is expensive so we only implemented it for the most 

necessary components in the storage subsystem.

GPFS offers the capability to place a file, based on its attributes, into a specific location that 

best addresses that file’s access requirements. This capability is called “tiering”. For 

example, small files that are accessed frequently may be placed on faster disks for faster 

retrieval, thus decreasing the job run time. This feature of GPFS is implemented using ILM 

policies. These policies are SQL-like statements that place a file initially at a location based 

on an attribute, (or on time, size, and an attribute), and then later move the file to a new 

location. We used ILM policies to specify a default initial file placement on the flash to 

quickly capture incoming files, both large and small. We wrote rules that run hourly to move 

files from flash to spinning disk based on owner, file size, and age. Our typical daily data 

ingest rate is between 1 and 10 terabytes. With this rate, our flash array accommodates a 

week’s worth of data. To ensure there is enough space to ingest new data, we migrate 

between 100 gigabytes to 1 terabytes data hourly to disk in approximately 30 minutes.

In GPFS 3.5, and later, IBM added support for large (4 kilobyte) inodes and the storage of 

“extra small” files in a file’s extended attributes. Typically inodes only store a file’s location 

in the file system and assigned data blocks, however, in recent years extended attributes have 

allowed administrators to add more specific metadata to files, such as ACLs and archiving 

status. By increasing the size of the inodes, the file system is providing better support for 

additional and more advanced uses of extended attributes. IBM chose to leverage this feature 

by placing the file data content into the extended attributes. With 4 kilobyte inodes, 

approximately 130 million files or over half of the files on our file system fit into the inode 

itself, thus saving us storage and improving I/O performance. This feature is extremely 

important for systems such as ours where we have millions of files that fit into these large 

inodes. The latency to lookup the file content was removed, as the content was delivered 
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from the inode itself. Additionally, as the minimum allocation for a data block is one 

subblock (32 kilobytes on the 2013 system), even for zero size files, this new metadata 

feature saves approximately 4 terabytes of space on the 2013 system, or 16 terabytes on the 

2014 system (128 kilobyte subblocks).

8. RELATED WORK

There has been significant recognition of the computational and data challenges posed by 

genomic sequencing [24,26,29,37,44,61,62]. Much of the work centers on the evaluation of 

existing tools and the optimization of existing tools and platforms. Researchers are 

especially interested in the evaluation of tools such as variant callers and their associated 

algorithms, as each tool interprets the genomic data with differing levels of specificity and 

sensitivity [16,17,21,25]. Many efforts have been made to optimize the underlying 

algorithms and I/O for many of these tools to reduce the time to solution. In our experience, 

the individual software optimizations are not accepted by the broader computational 

genomics community unless they are incorporated into the “GATK Best Practices” pipeline. 

Some have customized pipelines for their specific environments [24,37].

Projects such as Galaxy [59], Globus Genomics [40], SparkSeq [43], Google Genomics [38], 

ClusterK [39], Atlas2 Cloud [60], DNA Nexus, SeqInCloud [29] all provide the “GATK 

Best Practices” pipeline as a service backed by the cloud. This approach removes the need 

for local computation and storage resources. Many of the user interfaces for these services 

are graphical which some find easier to use.

Although various methods exist to collect small jobs together for more efficient scheduling 

and processing [65–68] including HTCondor [69] and DAGMan [70], integration with the 

GATK-Queue control process would require new plugins to manage individual job failures 

and other aspects of the pipeline.

ADAM is a new approach to improving data portability and scalability for genomic data 

built on Apache Spark [44]. Cloudburst uses Hadoop to map next generation sequence data 

[28]. SeqInCloud uses Microsoft Hadoop on Azure. The “GATK Best Practices” pipeline 

uses a proprietary MapReduce framework [9].

There has been significant research in the area of characterizing [41] and optimizing 

scientific workflows [42,54–58]. In addition, there has been work on characterizing 

scientific I/O patterns [51] and sharing best practices [52]. There has been some work 

evaluating flash storage for scientific workflows that did not find significant improvements 

in I/O performance [53]. This was not the case in our work, and helps to emphasize the 

importance of characterizing and designing systems around specific workflows. Other 

historical work includes optimizations for small I/O patterns [63] and estimates of batch 

queue delays [64].

Work describing actual HPC user and system metrics include papers on scheduling HPC 

workloads [46–48], parallel file systems [50] and reliability [45]. To the best of our 

knowledge, no prior work shares the actual usage and impact of the “GATK Best Practices” 

pipeline on the underlying computing system.
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9. CONCLUSIONS

To accelerate scientific throughput on our computing resources, we performed a 

comprehensive analysis of user requirements, system metrics and benchmarks to architect an 

expanded system best matched to our actual usage patterns. In total, our expanded Minerva 

design provided nearly a five times speedup for our “GATK Best Practices” workflows, with 

slow downs due to storage subsystem and scheduler saturation eliminated.

We improved Minerva’s reliability, performance and utility for our users by studying the 

characteristics of our job mix and combining it with a new scheduler and optimized queue 

structure. We identified I/O bottlenecks and usage patterns with a new tool. We architected a 

new storage subsystem with flash, tiering and data stored in inodes that performed 

consistently, reliably and better for the large number of tiny files that the GATK-Queue 

workflow generated. We saved storage space by storing data within inodes. We benchmarked 

the most computationally intensive portions of the pipeline and selected a processor and 

node type tuned for our genomics workload. Our choices facilitated more jobs through the 

queue and a shorter job turn around time for our researchers.

We believe our strategy for collecting requirements through direct discussions with scientists 

coupled with data analysis from actual and projected usage is an effective approach to 

architect a system. A further step that might be helpful would be to “replay” our actual 

workload on a scheduler simulator to experiment with how changes to our scheduling 

policies might improve throughput. Another technique for increasing the throughput of the 

workflow might be to further explore the work done with threading and resource 

provisioning and workflow scheduler optimization [37,41,42,54–58].

Ultimately, our experience made clear the vastly different style of workflow required by 

genomics researchers, which required a critical re-thinking of the standard, large and wide 

job paradigm most typical of HPC workloads. Our thorough understanding of the actual 

usage patterns empowered us to build a system optimized for increased scientific 

productivity.
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Figure 1. 
Genomics sequencing pipeline at Mount Sinai
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Figure 2. 
DNA workflow [22]
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Figure 3. 
“GATK Best Practices” variant calling job profile
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Figure 4. 
IOPs for flash vs. SAS under high load
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Figure 5. 
Projected genomics compute usage
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Figure 6. 
Projected genomics data usage
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Figure 7. 
Distribution of GATK CPU time
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Figure 8. 
Strong scaling on BWA
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Figure 9. 
GATK CPU efficiency
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Table 1

Minerva usage year 1

# of files 54,026,071

Total storage used (TB) 770.7

Average file size (MB) 15

Median file size (bytes) 29

Maximum file size (TB) 1.3

Minimum file size (bytes) 0

80% of files smaller than (KB) 10

# of zero-length files 1,731,148

Amount of archival storage used (PB) 1

Maximum # of core hours used/job 22,161

Minimum # of core hours used/job 0

Average # of core hours used/job 4.2

Median # of core hours used/job 10.8

Maximum job run time (hours) 205

Minimum job run time (hours) 0

Average job run time (hours) 1.6

Median job run time (hours) 0.08
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Table 2

Distribution of file sizes

Decile Max Size # Files

10% 3 B 5.5 M

20% 6 B 32 M

30% 10 B 17 M

40% 39 B 20 M

50% 340 B 19 M

60% 2 KB 19 M

70% 3.7 KB 19 M

80% 17 KB 19 M

90% 84 KB 19 M

100% 5 TB 19 M
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Table 3

Expanded Minerva configuration

Minerva system

Peak speed (TF) 325

# of core hours avail/year (millions) 110

# of cores 12,864

# of nodes 536

Amount of memory (TB) 57

Interconnection QDR & FDR

Total/usable storage (PB) 11.1/8.5

Storage bandwidth (GB/s) 130

Parallel file system GPFS

Resource manager/scheduler LSF

Initial Minerva nodes (Dell)

# of sockets 4

# of cores 64

Type of cores AMD Interlagos

Speed of cores (GHz) 2.3

Amount of memory (GB) 256

Expanded Minerva nodes (IBM)

# of sockets 2

# of cores 12

Type of cores Intel Ivy Bridge

Speed of cores (GHz) 3.5

Amount of memory (GB) 64

Big Omics Data Engine (Cray)

# of sockets 2

# of cores 12

Type of cores Intel Haswell

Speed of cores (GHz) 2.4

Amount of memory (GB) 64
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